Polymorphism study of Cryptosporidium hominis gp60 subtypes circulating in Tunisia

2017 ◽  
Vol 110 ◽  
pp. 298-303 ◽  
Author(s):  
Rym Essid ◽  
Hanen Chelbi ◽  
Emna Siala ◽  
Ines Bensghair ◽  
Jean Menotti ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3152
Author(s):  
Helen Bagnall ◽  
Rachel M. Chalmers ◽  
Michelle Henderson ◽  
Stewart Sorrell ◽  
Guy Robinson ◽  
...  

In October 2016, Public Health England was initially notified of four cases of cryptosporidiosis among users of two swimming pools. We investigated to identify further cases, the outbreak source, and ensure the implementation of appropriate control measures. Probable primary cases had diarrhoea and reported swimming in the pools 1–12 days prior to illness; confirmed cases were verified by the reference laboratory. Secondary cases had contact with primary cases 1–12 days prior to illness. We identified twenty-two cases: eleven were primary (eight confirmed) and eleven were secondary (five confirmed). Four cases were infected with C. parvum (different gp60 subtypes); all were primary and swam at two pools. Seven primary and secondary cases were infected with C. hominis gp60 subtype IdA16, and all were associated one pool. Failings in pool water treatment and management were identified that likely contributed to the load on the filters and their efficiency. Our investigation identified a complex outbreak, with secondary transmission, involving exposures to two swimming pools. C. hominis IdA16 is rare; it has been isolated from only three previous UK cases. We hypothesize that C. hominis cases arose from a common exposure, and the C. parvum cases were likely sporadic. This investigation highlights the value of integrating epidemiology and microbiology to investigate clusters of Cryptosporidium cases, defining the extent of the outbreak and the likely transmission pathways.


2014 ◽  
Vol 143 (5) ◽  
pp. 1033-1036 ◽  
Author(s):  
I. FUENTES ◽  
C. MARTÍN ◽  
X. BERISTAIN ◽  
A. MAZÓN ◽  
J. M. SAUGAR ◽  
...  

SUMMARYTwo clusters of confirmed cryptosporidiosis infections were detected in Navarra, Spain, in the summer of 2012, in the context of an increased incidence in the region. Molecular subtyping of Cryptosporidium hominis determined that one cluster, occurring in an urban area, was due to the predominant circulating subtype IbA10G2R2 and the other cluster, with cases occurring in a rural area, was due to a rare subtype IaA18R3. No single exposure was associated with infection, although exposure to certain children's pools was reported by a majority of patients interviewed in each cluster. Genotyping tools were useful in the investigation and could aid investigation of cryptosporidiosis outbreaks in Spain in the future.


Author(s):  
Bijay Ranjan Mirdha

AbstractCryptosporidiosis is one of the major causes of diarrhea in immune-compromised individuals and children besides causing sporadic water-borne, food-borne, and zoonotic outbreaks. In 2016, Cryptosporidium species infection was the fifth leading cause of diarrhea and acute infection causing more than 4.2 million disability-adjusted life years lost besides a decrease in childhood growth. Human cryptosporidiosis is primarily caused by two species/genotype: Cryptosporidium hominis (anthroponotic) and Cryptosporidium parvum (zoonotic) besides other six rare species/genotypes. Transmission intensity, genetic diversity, and occurrence of genetic recombination have shaped the genus Cryptosporidium population structures into palmitic, clonal, and epidemic. Genetic recombination is more in C. parvum compared with C. hominis. Furthermore, parasite–host co-evolution, host adaptation, and geographic segregation have led to the formation of “subtype- families.” Host-adapted subtype-families have distinct geographical distribution and host preferences. Genetic exchanges between subtypes played an important role throughout the evolution of the genus leading to “adaptation introgression” that led to emergence of virulent and hyper-transmissible subtypes. The population structure of C. hominis in India appears to be more complex where both transmission intensity and genetic diversity are much higher. Further, study based on “molecular strain surveillance” has resulted newer insights into the epidemiology and transmission of cryptosporidiosis in India. The identification at the species and genotype levels is essential for the assessment of infection sources in humans and the public health potential of the parasite at large. The results of the study over three decades on cryptosporidiosis in India, in the absence of a national surveillance data, were analyzed highlighting current situation on epidemiology, genetic diversity, and distribution particularly among vulnerable population. Despite creditable efforts, there are still many areas need to be explored; therefore, the intent of this article is to facilitate future research approaches for mitigating the burden associated with this disease.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 293
Author(s):  
Idalécia Cossa-Moiane ◽  
Hermínio Cossa ◽  
Adilson Fernando Loforte Bauhofer ◽  
Jorfélia Chilaúle ◽  
Esperança Lourenço Guimarães ◽  
...  

Cryptosporidium is one of the most important causes of diarrhea in children less than 2 years of age. In this study, we report the frequency, risk factors and species of Cryptosporidium detected by molecular diagnostic methods in children admitted to two public hospitals in Maputo City, Mozambique. We studied 319 patients under the age of five years who were admitted due to diarrhea between April 2015 and February 2016. Single stool samples were examined for the presence of Cryptosporidium spp. oocysts, microscopically by using a Modified Ziehl–Neelsen (mZN) staining method and by using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) technique using 18S ribosomal RNA gene as a target. Overall, 57.7% (184/319) were males, the median age (Interquartile range, IQR) was 11.0 (7–15) months. Cryptosporidium spp. oocysts were detected in 11.0% (35/319) by microscopy and in 35.4% (68/192) using PCR-RFLP. The most affected age group were children older than two years, [adjusted odds ratio (aOR): 5.861; 95% confidence interval (CI): 1.532–22.417; p-value < 0.05]. Children with illiterate caregivers had higher risk of infection (aOR: 1.688; 95% CI: 1.001–2.845; p-value < 0.05). An anthroponotic species C. hominis was found in 93.0% (27/29) of samples. Our findings demonstrated that cryptosporidiosis in children with diarrhea might be caused by anthroponomic transmission.


2016 ◽  
Vol 55 (3) ◽  
pp. 844-858 ◽  
Author(s):  
Per Sikora ◽  
Sofia Andersson ◽  
Jadwiga Winiecka-Krusnell ◽  
Björn Hallström ◽  
Cecilia Alsmark ◽  
...  

ABSTRACTIn order to improve genotyping and epidemiological analysis ofCryptosporidiumspp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 differentCryptosporidium hominispatient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encodingCryptosporidiumoocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to theCryptosporidium parvumreference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in theC. hoministree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencingCryptosporidiumdirectly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes ofCryptosporidiumfrom human fecal samples, while alluding to the potential for a higher degree of genotyping withinCryptosporidiumepidemiology.


Parasitology ◽  
2013 ◽  
Vol 140 (14) ◽  
pp. 1735-1740 ◽  
Author(s):  
MARIANNE LEBBAD ◽  
JESSICA BESER ◽  
MONA INSULANDER ◽  
LILLEMOR KARLSSON ◽  
JENS G. MATTSSON ◽  
...  

SUMMARYMost human cases of cryptosporidiosis are caused byCryptosporidium parvumorCryptosporidium hominis, but the use of molecular diagnostic methods has revealed that several other less common species or genotypes can also be involved. Here, we describe two unusual causes of cryptosporidiosis, one being the recently described speciesCryptosporidium viatorumand the otherCryptosporidiumchipmunk genotype I. Two Swedish patients who were infected withC. viatorumhad travelled to Kenya and Guatemala, respectively, and two others had been infected withCryptosporidiumchipmunk genotype I in Sweden. None of these four patients were immunocompromised, and all four showed classical symptoms of cryptosporidiosis. We performed extensive molecular characterization, including analysis of four loci. The twoC. viatorumisolates were found to differ slightly at the 70-kDa heat shock protein locus, which may indicate a local geographical variation in this species that has previously been described exclusively on the Indian subcontinent.


2008 ◽  
Vol 50 (3) ◽  
pp. 139-143 ◽  
Author(s):  
Ana Julia Urias dos Santos Araújo ◽  
Herminia Yohko Kanamura ◽  
Marcos Eduardo de Almeida ◽  
Aparecida Helena de Souza Gomes ◽  
Thais Helena Lemos Pinto ◽  
...  

Cryptosporidium isolates identified in fourteen stool samples, collected from five HIV-infected patients and nine immunocompetent children, living in the Sate of São Paulo, Brazil, were submitted to a molecular analysis using a nested PCR followed of restriction fragment length polymorphism (RFLP), for genetic characterization. The analysis was based on digestion with RsaI restriction enzyme of a DNA fragment amplified from the Cryptosporidium oocyst wall protein (COWP) gene. Based on this analysis, four samples were identified as Cryptosporidium parvum, eight as Cryptosporidium hominis and two presented a profile that correspondedto Cryptosporidium meleagridis when compared to the standards used in the analysis. The use of molecular methods can be helpful to identify source of infections and risk factors related to Cryptosporidium infection in our communities.


Author(s):  
Z. Banda ◽  
Rosely A.B. Nichols ◽  
A.M. Grimason ◽  
H.V. Smith

Of 1 346 faecal samples from the Chikwawa and Thyolo districts of Malawi, analysed for the presence of Cryptosporidium oocysts between October 2001 and May 2003, 61.3 % were from cattle (29.8 % of these were from calves < 6 months old). Cryptosporidium oocysts were detected during all three seasons studied in Chikwawa and Thyolo. In Chikwawa, 13.6 % of adult cattle and 11.7 % of calves were infected, compared to 28.9 % of adult cattle and 36.7 % of calves in Thyolo. Dependent on season, between 7.8 % and 37.7 % (Chikwawa) and 16.7 % and 39.3 % (Thyolo) of cattle samples contained oocysts. In Chikwawa, the highest percentage of infections occurred in the cool season, whereas in Thyolo, the highest percentage of infections occurred in the dry season. Faecal samples from goats [n = 225], pigs [n = 92], sheep [n = 6]), rabbits, guinea pigs, chickens, ducks, turkeys, doves and guinea fowls were also analysed. Up to 5.6 % of goat samples contained oocysts in Chikwawa, compared to between 16.7 % and 39.3 % in Thyolo. Again, in Chikwawa, the highest percentage of infections occurred in the cool season and the lowest in the rainy season, whereas, in Thyolo, the highest percentage of infections occurred in the dry season and the lowest in the cool season. In pigs, more infections were detected in the dry season in Chikwawa, but infections in the cool season were similar (17.7 %), whereas in Thyolo, infections occurred in all three seasons (17.9 % in the rainy season, 25 % in the cool season and 60 % in the dry season). Often diarrhoeic, oocyst positive cattle faecal samples collected from Chikwawa and subjected to PCR-RFLP, four oocyst positive samples (two from heifers, one from a cow and one unknown) were amplified at an 18S rRNA and Cryptosporidium oocyst wall protein (COWP) loci. RFLP of the 18S rRNA locus indicated that Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium bovis and / or Cryptosporidium ryanae DNA, or a mixture of them was present. Cryptosporidium parvum DNA was identified in one sample that amplified at the COWP locus, indicating the presence of the major zoonotic Cryptosporidium species in Malawi.


2021 ◽  
pp. gr.275325.121
Author(s):  
Rodrigo P. Baptista ◽  
Yiran Li ◽  
Adam Sateriale ◽  
Karen L. Brooks ◽  
Alan Tracey ◽  
...  

Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design and interpretation. We have generated a new C. parvum IOWA genome assembly supported by PacBio and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species C. parvum, Cryptosporidium hominis and Cryptosporidium tyzzeri. We made 1,926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis and C. tyzzeri revealed that most "missing" orthologs are found suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation and single nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.


Sign in / Sign up

Export Citation Format

Share Document