RNA-seq reveals the critical role of Lon protease in stress response and Brucella virulence

2019 ◽  
Vol 130 ◽  
pp. 112-119 ◽  
Author(s):  
Yufu Liu ◽  
Hao Dong ◽  
Xiaowei Peng ◽  
Qiang Gao ◽  
Hui Jiang ◽  
...  
BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


2021 ◽  
Author(s):  
Holly N Stephenson ◽  
Robert Streeck ◽  
Alf Herzig

Proven roles for haemocytes (blood cells) have expanded beyond the control of infections in Drosophila. Despite this, the critical role of haemocytes in post-embryonic development has long been thought to be limited to control of microorganisms during metamorphosis. This has previously been shown by rescue of adult development in haemocyte-ablation models under germ-free conditions. Here we show that haemocytes have a critical role in post-embryonic development beyond their ability to control the microbiota. Using a newly generated, strong haemocyte-specific driver line for the GAL4/UAS system, we show that specific ablation of haemocytes is pupal lethal, even under axenic conditions. Genetic rescue experiments prove that this is a haemocyte-specific phenomena. RNA-seq data suggests that dysregulation of the midgut is a critical consequence of haemocyte ablation. We believe this novel role of haemocytes during metamorphosis is a major finding for the field. This is an exciting new Drosophila model to study the precise mechanisms in which haemocytes regulate tissue development, findings from which could have far reaching implications beyond invertebrate biology.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1681-1681
Author(s):  
Hee-Jin Choi ◽  
Chih-Hang Anthony Tang ◽  
Linlu Tian ◽  
Yongxia Wu ◽  
Mohammed Hanief Sofi ◽  
...  

Abstract Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1s pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α not only activates XBP-1s transcription factor by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Besides, it is known that ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that B cells deficient for XBP-1s reduced ability to induce cGVHD, which however was reversed by inactivation of IRE-1α, highlighting the role of RIDD in controlling cGVHD (Fig. A). Activation of RIDD targets IgM mRNA of (Fig. B), a contributor to organ damage and fibrosis in cGVHD, which correlated with dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells (Fig. C). Alloreactive T cells need to be primed by APCs to initiate GVHD, and specifically, CD86 and CD40 mediated-costimulation from APCs has been demonstrated to play an essential role in eliciting cGVHD. We demonstrated that alloreactivity of T cells, especially CD4 T cells, can be recovered by suppressing RIDD in XBP-1s-deficient B cells (Fig. D). Since IRE-1α carrying a S729A mutation shows ablated RIDD activity without effect on splicing XBP-1 mRNA, we investigated the contribution of B cells from S729A knock-in mice to confirm the role of RIDD in B cells. We found that B cells from S729A mice increased GVHD severity (Fig. E). S729A B cells showed significant increases in IgM secretion (Fig. F), GC cell differentiation (Fig. G), and the expression levels of MHCII and co-stimulatory factors (Fig. H). In conclusion, these results provide a novel insight on how ER stress response regulates B cell activity after allo-HCT and suggest RIDD is an important mediator for reducing cGVHD pathogenesis. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zheng Zhao ◽  
Ke-Nan Zhang ◽  
Rui-Chao Chai ◽  
Kuan-Yu Wang ◽  
Ruo-Yu Huang ◽  
...  

Background. Researches on immunotherapy of glioblastoma multiforme (GBM, WHO grade IV) have increased exponentially in recent years. As a targeted therapy, a series of biomarkers have been identified in local tumor tissue, while circulating marker which could be detected in the body fluids is still lacking. ADAMTSL4, a secreted glycoprotein, was earlier found to play a critical role in a prognostic signature for primary GBM (pGBM). We aimed to investigate the role of ADAMTSL4 at transcriptome level and its relationship with clinical practice in pGBM. Methods. A cohort of 88 pGBM patients with RNA-seq data from the Chinese Glioma Genome Atlas (CGGA) was analyzed, and 168 pGBM patients from TCGA were included as validation. Several bioinformatic methods and predictive tools were applied to investigate the ADAMTSL4-associated immune microenvironment status. Results. We found that ADAMTSL4 was enriched in GBM (WHO grade IV), especially for those with IDH1/2 wild-type and MGMT unmethylated groups. According to the TCGA classification scheme, ADAMTSL4 can act as a potential marker for subtypes with poorer prognosis. Bioinformatic analyses revealed that ADAMTSL4 was significantly correlated to the immune-related processes in GBM (WHO grade IV), especially representing the infiltration of immune cells and complicated tumor microenvironment. Clinically, high expression of ADAMTSL4 was an independent indicator for poor prognosis. Conclusion. The expression of ADAMTSL4 is closely related to the clinicopathologic characteristics of pGBM. Meanwhile, it may play a critical role in immune-related processes. As a secreted glycoprotein, ADAMTSL4 is a promising circulating biomarker for pGBM, deserving further investigations.


2013 ◽  
Vol 14 (4) ◽  
pp. 7370-7390 ◽  
Author(s):  
Min Wang ◽  
Qingsong Zheng ◽  
Qirong Shen ◽  
Shiwei Guo

2015 ◽  
Author(s):  
Jatin Narula ◽  
Abhinav Tiwari ◽  
Oleg A. Igoshin

SummaryDespite the central role of alternative sigma factors in bacterial stress response and virulence their regulation remains incompletely understood. Here we investigate one of the best-studied examples of alternative sigma factors: the σBnetwork that controls the general stress response ofBacillus subtilisto uncover widely relevant general design principles that describe the structure-function relationship of alternative sigma factor regulatory networks. We show that the relative stoichiometry of the synthesis rates of σB, its anti-sigma factor RsbW and the anti-anti-sigma factor RsbV plays a critical role in shaping the network behavior by forcing the σBnetwork to function as an ultrasensitive negative feedback loop. We further demonstrate how this negative feedback regulation insulates alternative sigma factor activity from competition with the housekeeping sigma factor for RNA polymerase and allows multiple stress sigma factors to function simultaneously with little competitive interference.Major Subject Areas:Computational and systems biology, Microbiology & Infectious diseaseResearch Organism:Bacillus subtilis


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Devender Arora ◽  
Jong-Eun Park ◽  
Dajeong Lim ◽  
Bong-Hwan Choi ◽  
In-Cheol Cho ◽  
...  

Abstract Background DNA methylation and demethylation at CpG islands is one of the main regulatory factors that allow cells to respond to different stimuli. These regulatory mechanisms help in developing tissue without affecting the genomic composition or undergoing selection. Liver and backfat play important roles in regulating lipid metabolism and control various pathways involved in reproductive performance, meat quality, and immunity. Genes inside these tissue store a plethora of information and an understanding of these genes is required to enhance tissue characteristics in the future generation. Results A total of 16 CpG islands were identified, and they were involved in differentially methylation regions (DMRs) as well as differentially expressed genes (DEGs) of liver and backfat tissue samples. The genes C7orf50, ACTB and MLC1 in backfat and TNNT3, SIX2, SDK1, CLSTN3, LTBP4, CFAP74, SLC22A23, FOXC1, GMDS, GSC, GATA4, SEMA5A and HOXA5 in the liver, were categorized as differentially-methylated. Subsequently, Motif analysis for DMRs was performed to understand the role of the methylated motif for tissue-specific differentiation. Gene ontology studies revealed association with collagen fibril organization, the Bone Morphogenetic Proteins (BMP) signaling pathway in backfat and cholesterol biosynthesis, bile acid and bile salt transport, and immunity-related pathways in methylated genes expressed in the liver. Conclusions In this study, to understand the role of genes in the differentiation process, we have performed whole-genome bisulfite sequencing (WGBS) and RNA-seq analysis of Nanchukmacdon pigs. Methylation and motif analysis reveals the critical role of CpG islands and transcriptional factors binding site (TFBS) in guiding the differential patterns. Our findings could help in understanding how methylation of certain genes plays an important role and can be used as biomarkers to study tissue specific characteristics.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4541-4541
Author(s):  
Steven D Schutt ◽  
Chih-Hang Anthony Tang ◽  
Yongxia Wu ◽  
David A Bastian ◽  
Juan Del Valle ◽  
...  

Abstract Inhibition of the endoplasmic reticulum (ER) stress response via blockade of inositol-requiring enzyme-1α (IRE-1α) is currently a promising therapeutic strategy to treat B-cell leukemia, lymphoma, and myeloma. Because B cells play an important role in the development of chronic graft-versus-host disease (cGVHD), we hypothesize that the ER stress response contributes to B-cell function and pathogenicity in cGVHD. Here, we report that the ER stress response mediated by IRE-1α and its target X-box binding protein-1 (XBP-1) plays a critical role in cGVHD pathophysiology and represents a potential therapeutic target to prevent cGVHD. We tested the role of XBP-1 specifically in B cells by testing XBP-1 conditional knockout B cell grafts (XBP1fl/flCD19Cre+) in two mouse models of cGVHD. In the first model (B6 to BALB/c), recipients given XBP-1-deficient donor grafts showed significantly reduced cGVHD clinical scores, which were associated with reduced frequencies of donor-derived CD4 helper T cells within the lungs compared to the recipients of XBP-1fl/flCD19Cre- littermate donor grafts. XBP-1-deficient B cells produced significantly higher levels of IL-10 compared to WT control B cells after activation ex vivo. In the second model (B6 to B10.BR), the conversion of donor B cells to plasma cells (B220+CD38+CD138+) was reduced in both the spleens and lungs of recipients transplanted with XBP1fl/flCD19Cre+ grafts compared to those of the recipients given XBP1fl/flCD19Cre- grafts. Recipients given XBP1fl/flCD19Cre+ grafts also showed significantly higher total splenocytes and vastly increased splenic B-cell populations when compared with the recipients of XBP1fl/flCD19Cre- grafts. To expand on these findings, we tested if systemic XBP-1 blockade via a novel IRE-1α inhibitor, B-I09, would attenuate cGVHD. In a cutaneous model of cGVHD (B10.D2 to BALB/c), we found that prophylactic administration of B-I09 significantly reduced clinical features of cGVHD compared to vehicle controls (Fig. 1A). Validating these findings, hematoxylin and eosin stained skin sections of B-I09-treated mice had significantly lower pathology scores compared to vehicle controls (Fig. 1B). Isolated skin lymphocytes from recipients treated with B-I09 showed significant reductions in donor derived T cells and DCs compared to those treated with vehicle controls (Fig. 1C and D). Taken together, our findings reveal a novel role of the IRE-1α/XBP-1 pathway of the ER stress response in cGVHD pathophysiology and provide a readily translatable strategy to prevent the development of cGVHD in the clinic. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101260
Author(s):  
David E Place ◽  
Parimal Samir ◽  
RK Subbarao Malireddi ◽  
Thirumala-Devi Kanneganti

The integrated stress response (ISR) regulates cellular homeostasis and cell survival following exposure to stressors. Cell death processes such as apoptosis and pyroptosis are known to be modulated by stress responses, but the role of the ISR in necroptosis is poorly understood. Necroptosis is an inflammatory, lytic form of cell death driven by the RIPK3-MLKL signaling axis. Here, we show that macrophages that have induced the ISR are protected from subsequent necroptosis. Consistent with a reduction in necroptosis, phosphorylation of RIPK1, RIPK3, and MLKL is reduced in macrophages pre-treated with ISR-inducing agents that are challenged with necroptosis-inducing triggers. The stress granule component DDX3X, which is involved in ISR-mediated regulation of pyroptosis, is not required for protecting ISR-treated cells from necroptosis. Disruption of stress granule assembly or knockdown of Perk restored necroptosis in pre-stressed cells. Together, these findings identify a critical role for the ISR in limiting necroptosis in macrophages.


Sign in / Sign up

Export Citation Format

Share Document