scholarly journals The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita

2019 ◽  
Vol 12 (4) ◽  
pp. 506-520 ◽  
Author(s):  
Josué Barrera-Redondo ◽  
Enrique Ibarra-Laclette ◽  
Alejandra Vázquez-Lobo ◽  
Yocelyn T. Gutiérrez-Guerrero ◽  
Guillermo Sánchez de la Vega ◽  
...  
2021 ◽  
Author(s):  
XIang Li ◽  
Qiongyi Zhao ◽  
Ziqi Wang ◽  
Wei-Siang Liau ◽  
Dean Basic ◽  
...  

Long-noncoding RNA (lncRNA) comprise a new class of genes that have been assigned key roles in development and disease. Many lncRNAs are specifically transcribed in the brain where they regulate the expression of protein-coding genes that underpin neuronal function; however, their role in learning and memory remains largely unexplored. We used RNA Capture-Seq to identify a large population of lncRNAs that are expressed in the infralimbic cortex of adult male mice in response to fear-related learning, with 14.5% of these annotated in the GENCODE database as lncRNAs with no known function. We combined these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear-extinction learning, and revealed 434 lncRNAs derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discovered an experience-induced lncRNA called ADRAM that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate early gene Nr4a2. This leads to the expulsion of histone deactylases 3 and 4, and the recruitment of the histone acetyltransferase creb binding protein, which drives learning-induced Nr4a2 expression. Knockdown of ADRAM disrupts this interaction, blocks the expression of Nr4a2, and ultimately impairs the formation of fear-extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain, highlights enhancer-derived RNAs (eRNAs) as key players in the epigenetic regulation of gene expression associated with fear extinction, and suggests eRNAs, such as ADRAM, may constitute viable targets in developing novel treatments for fear-related anxiety disorders.


2020 ◽  
Vol 48 (22) ◽  
pp. 12618-12631
Author(s):  
Mengbiao Guo ◽  
Zhen-Dong Xiao ◽  
Zhiming Dai ◽  
Ling Zhu ◽  
Hang Lei ◽  
...  

Abstract The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B–G039927 and EPS15L1–lncOR7C2–1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.


Author(s):  
Hidenori Tani ◽  
Naoto Imamachi ◽  
Rena Mizutani ◽  
Katsutoshi Imamura ◽  
Yeondae Kwon ◽  
...  

2018 ◽  
Author(s):  
Iuliia K. Karnaukhova ◽  
Dmitrii E. Polev ◽  
Larisa L. Krukovskaya ◽  
Alexey E. Masharsky ◽  
Olga V. Nazarenko ◽  
...  

AbstractOrthopedia homeobox (OTP) gene encodes a homeodomain-containing transcription factor involved in brain development. OTP is mapped to human chromosome 5q14.1. Earlier we described transcription in the second intron of this gene in wide variety of tumors, but among normal tissues only in testis. In GeneBank these transcripts are presented by several 300-400 nucleotides long AI267901-like ESTs.We assumed that AI267901-like ESTs belong to longer transcript(s). We used the Rapid Amplification of cDNA Ends (RACE) approach and other methods to find the full-length transcript. The found transcript was 2436 nucleotides long polyadenylated sequence in antisense to OTP gene. The corresponding gene consisted of two exons separated by an intron of 2961 bp long. The first exon was found to be 91 bp long and located in the third exon of OTP gene. The second exon was 2345bp long and located in the second intron of OTP gene.The search of possible open reading frames (ORFs) showed the lack of significant ORFs. We have shown the expression of new gene in many human tumors and only in one sampled normal testis. The data suggest that we discovered a new antisense cancer-testis sequence OTP-AS1 (OTP- antisense RNA 1), which belongs to long noncoding RNAs (lncRNAs). According to our findings we assume that OTP-AS1 and OTP genes may be the CT-coding gene/CT-ncRNA pair involved in regulatory interactions.Author summaryPreviously, long non-coding RNAs (lncRNAs) were considered as genetic “noise”. However, it was later shown that only 2% of genomic transcripts have a protein-coding ability. Non-coding RNA is divided into short non-coding RNAs (20-200 nucleotides) and long noncoding RNAs (200-100,000 nucleotides). Genes encoding lncRNA often overlap or are adjacent to protein-coding genes, and localization of this kind is beneficial in order to regulate the transcription of neighboring genes. Studies have shown that of lncRNAs play many roles in the regulation of gene expression. New evidence indicates that dysfunctions of lncRNAs are associated with human diseases and cancer.In our study we found a new cancer-testis long noncoding RNA (OTP-AS1), which is an antisense of protein-coding cancer-testis gene (OTP). Thus, OTP-AS1 and OTP genes may be the CT-coding gene/CT-ncRNA pair involved in regulatory interactions. This is supported by the similar profile of their expression. OTP-AS1 may be of interest as a potential diagnostic marker of cancer or a potential target for cancer therapy.Part of OTP-AS1 gene (5’-end of the second exon) is evolutionary younger than the rest of gene sequence and is less conservative. This links OTP-AS1 gene with so-called TSEEN (tumor-specifically expressed, evolutionary novel) genes described by the authors in previous papers.


2020 ◽  
Vol 33 (5) ◽  
pp. 696-703
Author(s):  
Jae-Young Choi ◽  
KyeongHye Won ◽  
Seungwoo Son ◽  
Donghyun Shin ◽  
Jae-Don Oh

Objective: Cattle were some of the first animals domesticated by humans for the production of milk, meat, etc. Long noncoding RNA (lncRNA) is defined as longer than 200 bp in non-protein coding transcripts. lncRNA is known to function in regulating gene expression and is currently being studied in a variety of livestock including cattle. The purpose of this study is to analyze the characteristics of lncRNA according to sex in Hanwoo cattle.Methods: This study was conducted using the skeletal muscles of 9 Hanwoo cattle include bulls, steers and cows. RNA was extracted from skeletal muscle of Hanwoo. Sequencing was conducted using Illumina HiSeq2000 and mapped to the Bovine Taurus genome. The expression levels of lncRNAs were measured by DEGseq and quantitative trait loci (QTL) data base was used to identify QTLs associated with lncRNA. The python script was used to match the nearby genesResults: In this study, the expression patterns of transcripts of bulls, steers and cows were identified. And we identified significantly differentially expressed lncRNAs in bulls, steers and cows. In addition, characteristics of lncRNA which express differentially in muscles according to the sex of Hanwoo were identified. As a result, we found differentially expressed lncRNAs according to sex were related to shear force and body weight.Conclusion: This study was classified and characterized lncRNA which differentially expressed by sex in Hanwoo cattle. We believe that the characterization of lncRNA by sex of Hanwoo will be helpful for future studies of the physiological mechanisms of Hanwoo cattle.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 500-500
Author(s):  
Michelle Ng ◽  
Lonneke Verboon ◽  
Hasan Issa ◽  
Raj Bhayadia ◽  
Oriol Alejo ◽  
...  

Abstract The noncoding genome presents a largely untapped source of biological insights, including tens of thousands of long noncoding RNA (lncRNA) loci. While some produce bona fide lncRNAs, others exert transcript-independent cis-regulatory effects, and the lack of predictive features renders their mechanistic dissection highly challenging. Here, we describe CTCF-enriched lncRNA loci (C-LNC) as a putative new subclass of functional genetic elements exemplified by MYNRL15 - myeloid leukemia noncoding regulatory locus on chromosome 15. Initially identified by an expression-guided CRISPRi screen of hematopoietic stem and progenitor (HSPC) / acute myeloid leukemia (AML) lncRNA signatures (480 genes, 1545 sgRNAs), we found MYNRL15 dependency in myeloid leukemia cells of diverse genetic backgrounds. Interestingly, cis and trans perturbation approaches revealed both the MYNRL15 transcript and its flanking protein-coding genes to be dispensable. High density CRISPR tiling of a 15 kb area centered on MYNRL15 (1613 sgRNAs) instead uncovered two crucial, candidate cis-regulatory DNA elements in the locus, which drive the MYNRL15 perturbation phenotype. To determine the molecular basis of MYNRL15 dependence, we performed transcriptome, chromatin conformation, chromatin accessibility, and CTCF profiling. RNA-sequencing established MYNRL15's involvement in maintaining key cancer dependency pathways (e.g. cell cycle, ribosome, spliceosome). Further, MYNRL15 perturbation associated with the coordinated dysregulation of several chromosome 15 neighbourhoods, and formation of a long-range chromatin interaction between the locus and the base of a distal loop, as detected via next-generation Capture-C. The gained interaction was accompanied by diffuse gains in chromatin accessibility across the distal interaction sites (ATAC-seq) as well as reduced CTCF occupancy at the MYRNL15 locus (CTCF CUT&RUN), altogether indicating the 3D re-organization of chromosome 15 following MYNRL15 perturbation. Integrative analysis of the chromatin conformation and transcriptome data, combined with a small CRISPR-Cas9 knockout screen of protein-coding genes from the gained interaction region (29 genes, 149 sgRNAs), pinpointed two potent cancer dependency genes that are located in the region and downregulated following MYNRL15 perturbation: namely, WDR61 and IMP3. Individual knockout of both genes robustly depleted myeloid leukemia cells, recapitulating the MYNRL15 perturbation phenotype and positioning WDR61 and IMP3 as its regulatory targets. Importantly, in primary cells, MYNRL15 perturbation eradicated AML blasts while sparing 50-60% of CD34 + HSPCs in vitro, and reduced patient-derived AML xenografts up to 10-fold in vivo, indicating a potential therapeutic window. Having implicated MYNRL15 in 3D genome organization and demonstrated its role in myeloid leukemia cells, we explored whether MYNRL15 may belong to a sub-category of biologically relevant lncRNA loci that have thus far been overlooked due to their lack of transcript-specific functions. Remarkably, elevated CTCF density (e.g. number of CTCF binding sites per kb of gene length) distinguishes MYNRL15 and 531 other lncRNA loci in K562 cells, of which 43-54% associate with genetic subgroups and/or survival in AML patient cohorts, and 18.4% are functionally required for leukemia maintenance as determined by CRISPR-Cas9 screening. The latter hit identification rate represents a substantial improvement over typical lncRNA essentiality screens (which range from 2-6%) - illustrating the effectiveness of CTCF density metrics in refining functional lncRNA candidate lists, and underlining the relevance such loci hold for AML and cancer pathophysiology in general. Curated C-LNC catalogs in other cell types will facilitate the search for noncoding oncogenic vulnerabilities in AML and other malignancies. Figure 1 Figure 1. Disclosures Reinhardt: Celgene Corporation: Consultancy; Novartis: Consultancy; Bluebird Bio: Consultancy; Janssen: Consultancy; CLS Behring: Research Funding; Roche: Research Funding. Klusmann: Bluebird Bio: Consultancy; Novartis: Consultancy; Roche: Consultancy; Jazz Pharmaceuticals: Consultancy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Gao ◽  
Jimmy Yu-Wai Chan ◽  
Thian-Sze Wong

Background. Recent studies suggested that non-protein-coding genes are implicated in the tumorigenic process of nasopharyngeal carcinoma (NPC). In the present study, we aimed to identify the differentially expressed long noncoding RNA (lncRNA) using data available in the public domain.Methods. Microarray data set GSE12452 was reannotated with ncFANs. Real-time quantitative PCR was used to quantify and validate the identified lncRNAs in NPC.Results. In primary NPC, upregulation of lnc-C22orf32-1, lnc-AL355149.1-1, and lnc-ZNF674-1 was observed. High levels of lnc-C22orf32-1 and lnc-AL355149.1-1 were significantly associated with the male patients. In addition, increased expression of lnc-C22orf32-1 and lnc-ZNF674-1 was associated with advanced tumor stages. Recurrent NPC displayed a distinctive lncRNA expression pattern. lnc-BCL2L11-3 was significantly increased in the recurrent NPC tissues. In addition, significant reduction of lnc-AL355149.1-1 and lnc-ZNF674-1 was observed in the recurrent NPC tissues.Conclusions. Our results demonstrated that it is feasible to identify the differentially expressed lncRNA in the microarray dataset by functional reannotation. The association of lncRNA with gender and tumor size implicated that lncRNA possibly plays a part in the pathogenesis of primary NPC. Further, the distinctive lncRNA identified in the recurrent NPC may reveal a distinctive development mechanism underlying tumor recurrence.


Sign in / Sign up

Export Citation Format

Share Document