5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy

2021 ◽  
Vol 119 ◽  
pp. 111553
Author(s):  
Xuefang Hao ◽  
Weiwei Gai ◽  
Lina Wang ◽  
Jiadi Zhao ◽  
Dandan Sun ◽  
...  
2016 ◽  
Vol 22 (19) ◽  
pp. 2808-2820 ◽  
Author(s):  
Houman Alimoradi ◽  
Siddharth S. Matikonda ◽  
Allan B. Gamble ◽  
Gregory I. Giles ◽  
Khaled Greish

2019 ◽  
Vol 25 (37) ◽  
pp. 3917-3926
Author(s):  
Sajjad Molavipordanjani ◽  
Seyed Jalal Hosseinimehr

Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid and polymeric nanoparticles and their application in tumor targeting.


2020 ◽  
Vol 21 (9) ◽  
pp. 649-660
Author(s):  
Subashini Raman ◽  
Syed Mahmood ◽  
Ayah R. Hilles ◽  
Md Noushad Javed ◽  
Motia Azmana ◽  
...  

Background: Blood-brain barrier (BBB) plays a most hindering role in drug delivery to the brain. Recent research comes out with the nanoparticles approach, is continuously working towards improving the delivery to the brain. Currently, polymeric nanoparticle is extensively involved in many therapies for spatial and temporal targeted areas delivery. Methods: We did a non-systematic review, and the literature was searched in Google, Science Direct and PubMed. An overview is provided for the formulation of polymeric nanoparticles using different methods, effect of surface modification on the nanoparticle properties with types of polymeric nanoparticles and preparation methods. An account of different nanomedicine employed with therapeutic agent to cross the BBB alone with biodistribution of the drugs. Results: We found that various types of polymeric nanoparticle systems are available and they prosper in delivering the therapeutic amount of the drug to the targeted area. The effect of physicochemical properties on nanoformulation includes change in their size, shape, elasticity, surface charge and hydrophobicity. Surface modification of polymers or nanocarriers is also vital in the formulation of nanoparticles to enhance targeting efficiency to the brain. Conclusion: More standardized methods for the preparation of nanoparticles and to assess the relationship of surface modification on drug delivery. While the preparation and its output like drug loading, particle size, and charge, permeation is always conflicted, so it requires more attention for the acceptance of nanoparticles for brain delivery.


2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


2020 ◽  
Vol 12 ◽  
Author(s):  
Sai Akilesh M ◽  
Ashish Wadhwani

: Infectious diseases have been prevalent since many decades and viral pathogens have caused global health crisis and economic meltdown on a devastating scale. High occurrence of newer viral infections in the recent years, in spite of the progress achieved in the field of pharmaceutical sciences defines the critical need for newer and more effective antiviral therapies and diagnostics. The incidence of multi-drug resistance and adverse effects due to the prolonged use of anti-viral therapy is also a major concern. Nanotechnology offers a cutting edge platform for the development of novel compounds and formulations for biomedical applications. The unique properties of nano-based materials can be attributed to the multi-fold increase in the surface to volume ratio at the nano-scale, tunable surface properties of charge and chemical moieties. Idealistic pharmaceutical properties such as increased bioavailability and retention times, lower toxicity profiles, sustained release formulations, lower dosage forms and most importantly, targeted drug delivery can be achieved through the approach of nanotechnology. The extensively researched nano-based materials are metal and polymeric nanoparticles, dendrimers and micelles, nano-drug delivery vesicles, liposomes and lipid based nanoparticles. In this review article, the impact of nanotechnology on the treatment of Human Immunodeficiency Virus (HIV) and Herpes Simplex Virus (HSV) viral infections during the last decade are outlined.


Author(s):  
Weihe Yao ◽  
Chenyu Liu ◽  
Ning Wang ◽  
Hengjun Zhou ◽  
Hailiang Chen ◽  
...  

The targeted multi-responsive drug delivery systems with MRI capacity were anticipated as a promising strategy for tumor therapy and diagnosis. Herein, we successfully synthesized anisamide-modified and non-modified UV/GSH-responsive molecules (10,10-NB-S-S-P-AA...


2021 ◽  
Vol 263 ◽  
pp. 124380
Author(s):  
Çiğdem İçhedef ◽  
Serap Teksöz ◽  
Oğuz Çetin ◽  
Burcu Aydın ◽  
İbrahim Sarıkavak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document