In vitro risk assessment system for the brain development at an early postnatal stage

2009 ◽  
Vol 65 ◽  
pp. S96-S97
Author(s):  
Kaoru Sato ◽  
James E Goldman ◽  
Yasuo Ohno
2022 ◽  
Author(s):  
Zhen-Ge Luo ◽  
Xin-Yao Sun ◽  
Xiang-Chun Ju ◽  
Yang Li ◽  
Peng-Ming Zeng ◽  
...  

The recently developed brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis, brain disorders, and aging process, limits the utility of brain organoids. In this study, we induced vessel and brain organoids respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures, and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood-brain-barrier (BBB)-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, in particular the vasculature and microglia niche.


2020 ◽  
Author(s):  
Xiaoming Wu ◽  
Junfeng Wang ◽  
Libo Zou ◽  
Xiaojian Cui ◽  
Youcheng Wang ◽  
...  

Abstract Background Assisted reproductive technology (ART) such as in-vitro fertilization (IVF) and embryo transfer (ET) has been essential in the treatment of infertility, and the number of children born after these procedures has now passed 5 million worldwide. Children born after medically assisted reproduction are at higher risk of adverse birth outcomes than are children conceived naturally. In this study, we leveraged MRI technology to investigate whether ART pregnancy methods: intracytoplasmic sperm injection (ICSI) and ET have any effect on the brain development of offspring by comparing with the NAT pregnancy method. Methods A total of 75 infants were recruited in the study from 3 conception groups: 25 children born after ICSI, 25 children born after IVF-ET and 25 children born after natural pregnancy. Magnetic resonance imaging (MRI) scans provide exceptionally detailed information on how the human brain changes throughout childhood, adolescence, and old age. The use of MRI in the evaluation of the developing brain is well established. Results The results of routine brain scans on T1WI and T2WI showed that there was no significant difference among the 5-7, 11-13, and 23-25 months of infants among ET, ICSI, and NAT groups. The MRI values fluctuate at different time points indicating that they may change with the development of the brain. However, they are on a similar level for different conception groups supporting our previous statistical analysis that MRI values of ICSI and ET groups are not significantly different from NAT. Conclusions The results showed that there was no significant difference in brain development patterns between different modes of conception, which proved that ART does not affect the development of brain myelin in fetuses and infants.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yukio Ago ◽  
Satoshi Asano ◽  
Hitoshi Hashimoto ◽  
James A. Waschek

Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name ADCYAP1) is a multifunctional neuropeptide involved in brain development and synaptic plasticity. With respect to PACAP function, most attention has been given to that mediated by its specific receptor PAC1 (ADCYAP1R1). However, PACAP also binds tightly to the high affinity receptors for vasoactive intestinal peptide (VIP, VIP), called VPAC1 and VPAC2 (VIPR1 and VIPR2, respectively). Depending on innervation patterns, PACAP can thus interact physiologically with any of these receptors. VPAC2 receptors, the focus of this review, are known to have a pivotal role in regulating circadian rhythms and to affect multiple other processes in the brain, including those involved in fear cognition. Accumulating evidence in human genetics indicates that microduplications at 7q36.3, containing VIPR2 gene, are linked to schizophrenia and possibly autism spectrum disorder. Although detailed molecular mechanisms have not been fully elucidated, recent studies in animal models suggest that overactivation of the VPAC2 receptor disrupts cortical circuit maturation. The VIPR2 linkage can thus be potentially explained by inappropriate control of receptor signaling at a time when neural circuits involved in cognition and social behavior are being established. Alternatively, or in addition, VPAC2 receptor overactivity may disrupt ongoing synaptic plasticity during processes of learning and memory. Finally, in vitro data indicate that PACAP and VIP have differential activities on the maturation of neurons via their distinct signaling pathways. Thus perturbations in the balance of VPAC2, VPAC1, and PAC1 receptors and their ligands may have important consequences in brain development and plasticity.


Reproduction ◽  
2011 ◽  
Vol 142 (3) ◽  
pp. 401-408 ◽  
Author(s):  
Ning Wang ◽  
Liya Wang ◽  
Fang Le ◽  
Qitao Zhan ◽  
Yingming Zheng ◽  
...  

Despite the efforts to recapitulate the follicle environment, oocytes from in vitro maturation (IVM) have poorer developmental potential than those matured in vivo and the effects on the resultant offspring are of concern. The aim of this study was to determine altered gene expression in oocytes following IVM and to evaluate the expression of the arginine rich, mutated in early stage of tumors gene (Armet) and mitochondrial ribosomal protein L51 (Mrpl51) in embryos and brains of fetal/postnatal mice and the brain development of IVM offspring. An IVM mouse model was established while oocytes matured in vivo were used as the controls. Suppressive subtractive hybridization (SSH) and RT-PCR/western blot were used to analyze the differential expression of genes/proteins between IVM and the control group. HE staining and water maze were used to assess the histological changes in brain tissue and cognition of the offspring. The rates of fertilization, cleavage, and live birth were significantly decreased in IVM group. Thirteen genes were upregulated in IVM oocytes compared with the control, including Armet and Mrpl51. The higher level of Armet in IVM oocytes was retained in brain of newborn mice, which could be related to the upregulation of activating transcription factor 6 (Atf6) and X-box binding protein 1 (Xbp1), while Mrpl51 was expressed normally in brain of postnatal mice. No significant differences were detected in brain weight, neuronal counts, and the cognition in the offspring between the two groups. The present results suggested that IVM could affect the pregnancy outcome and the Armet and Mrpl51 gene/protein expression. The change in Armet expression lasted while the change of Mrpl51 disappeared after birth. However, the brain development of the offspring seemed to be unaffected by IVM.


2017 ◽  
Vol 41 (S1) ◽  
pp. s795-s795
Author(s):  
M. Ilieva ◽  
M. Kamand ◽  
K. Kolev ◽  
S.L. Forsberg ◽  
Å.F. Svenningsen ◽  
...  

IntroductionAutism spectrum disorders (ASD) is a group of neurodevelopmental disorders characterized by deficits in social cognition, communication, and behavioral flexibility. Most of the cases appear to be caused by the combination of autism risk genes and environmental factors affecting early embryonal brain development. The current animal and 2D cellular models are not able to recapitulate the complex integrity of the developing brain. Therefore a model of the brain that can cast a light on the pathological processes during brain development is of a high need.Aim and objectivesThe aim of our research is to develop a three-dimensional brain organotypic system (brain organoids) for culturing patient's derived induced pluripotent stem cells (iPSC).MethodologyWe propose a multidisciplinary approach, involving the generation of patient specific iPSC from somatic cells (fibroblasts) and 3D culturing techniques to build a complex “humanized” in vitro platform for ASD research. Further we will investigate differences in gene expression of potential disease related markers and cellular phenotype between autistic patients and controls.ResultsBrain organoids have the ability to recreate the right complexity of the brain. On the cellular and gene expression level, organoids demonstrate a high similarity to the neurodevelopment in vivo and can therefore recapitulate early stages of the neurogenesis.ConclusionTo date organoids are the most relevant cellular in vitro platform for the understanding the mechanisms behind ADS pathology. Organoids are a good modeling system for elucidating the role of epigenetic and environmental factors for development of ASD.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2018 ◽  
Vol 2 (3) ◽  
pp. 363-376 ◽  
Author(s):  
Surbhi Goswami ◽  
Shubham Parashar ◽  
Vandita Dwivedi ◽  
Asif Shajahan ◽  
Srinivasa-Gopalan Sampathkumar

Owing to its poly-anionic charge and large hydrodynamic volume, polysialic acid (polySia) attached to neural cell adhesion molecule regulates axon–axon and axon–substratum interactions and signalling, particularly, in the development of the central nervous system (CNS). Expression of polySia is spatiotemporally regulated by the action of two polysialyl transferases, namely ST8SiaII and ST8SiaIV. PolySia expression peaks during late embryonic and early post-natal period and maintained at a steady state in adulthood in neurogenic niche of the brain. Aberrant polySia expression is associated with neurological disorders and brain tumours. Investigations on the structure and functions, over the past four decades, have shed light on the physiology of polySia. This review focuses on the biological, biochemical, and chemical tools available for polySia engineering. Genetic knockouts, endo-neuraminidases that cleave polySia, antibodies, exogenous expression, and neuroblastoma cells have provided deep insights into the ability of polySia to guide migration of neuronal precursors in neonatal brain development, neuronal clustering, axonal pathway guidance, and axonal targeting. Advent of metabolic sialic acid engineering using ManNAc analogues has enabled reversible and dose-dependent modulation polySia in vitro and ex vivo. In vivo, ManNAc analogues readily engineer the sialoglycans in peripheral tissues, but show no effect in the brain. A recently developed carbohydrate-neuroactive hybrid strategy enables a non-invasive access to the brain in living animals across the blood–brain barrier. A combination of recent advances in CNS drugs and imaging with ManNAc analogues for polySia modulation would pave novel avenues for understanding intricacies of brain development and tackling the challenges of neurological disorders.


2001 ◽  
Vol 21 (22) ◽  
pp. 7787-7795 ◽  
Author(s):  
Joong K. Kim ◽  
Sung-Oh Huh ◽  
Heonsik Choi ◽  
Kee-Sook Lee ◽  
Dongho Shin ◽  
...  

ABSTRACT Srg3 (SWI3-related gene product) is a mouse homolog of yeast SWI3,Drosophila melanogaster MOIRA (also named MOR/BAP155), and human BAF155 and is known as a core subunit of SWI/SNF complex. This complex is involved in the chromatin remodeling required for the regulation of transcriptional processes associated with development, cellular differentiation, and proliferation. We generated mice with a null mutation in theSrg3 locus to examine its function in vivo. Homozygous mutants develop in the early implantation stage but undergo rapid degeneration thereafter. An in vitro outgrowth study revealed that mutant blastocysts hatch, adhere, and form a layer of trophoblast giant cells, but the inner cell mass degenerates after prolonged culture. Interestingly, about 20% of heterozygous mutant embryos display defects in brain development with abnormal organization of the brain, a condition known as exencephaly. Histological examination suggests that exencephaly is caused by the failure in neural fold elevation, resulting in severe brain malformation. Our findings demonstrate that Srg3 is essential for early embryogenesis and plays an important role in the brain development of mice.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


Agronomie ◽  
2003 ◽  
Vol 23 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Andy Hart ◽  
Colin D. Brown ◽  
Kathy A. Lewis ◽  
John Tzilivakis

Sign in / Sign up

Export Citation Format

Share Document