scholarly journals Target space duality of non-supersymmetric string theory

2022 ◽  
pp. 115667
Author(s):  
H. Itoyama ◽  
Yuichi Koga ◽  
Sota Nakajima
Keyword(s):  
1996 ◽  
Vol 11 (34) ◽  
pp. 2669-2679
Author(s):  
SWAPNA MAHAPATRA

Starting from the self-dual “triplet” of gravitational instanton solutions in Euclidean gravity, we obtain the corresponding instanton solutions in string theory by making use of the target space duality symmetry. We show that these dual triplet solutions can be obtained from the general dual Taub-NUT de Sitter solution through some limiting procedure as in the Euclidean gravity case. The dual gravitational instanton solutions obtained here are self-dual for some cases, with respect to certain isometries, but not always.


1994 ◽  
Vol 244 (2-3) ◽  
pp. 77-202 ◽  
Author(s):  
Amit Giveon ◽  
Massimo Porrati ◽  
Eliezer Rabinovici
Keyword(s):  

2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
Yuho Sakatani ◽  
Shozo Uehara

Abstract The $T$-duality of string theory can be extended to the Poisson–Lie $T$-duality when the target space has a generalized isometry group given by a Drinfel’d double. In M-theory, $T$-duality is understood as a subgroup of $U$-duality, but the non-Abelian extension of $U$-duality is still a mystery. In this paper we study membrane theory on a curved background with a generalized isometry group given by the $\mathcal E_n$ algebra. This provides a natural setup to study non-Abelian $U$-duality because the $\mathcal E_n$ algebra has been proposed as a $U$-duality extension of the Drinfel’d double. We show that the standard treatment of Abelian $U$-duality can be extended to the non-Abelian setup. However, a famous issue in Abelian $U$-duality still exists in the non-Abelian extension.


1999 ◽  
Vol 14 (28) ◽  
pp. 4501-4517 ◽  
Author(s):  
FEDELE LIZZI

We describe how the presence of the antisymmetric tensor (torsion) on the world sheet action of string theory renders the size of the target space a gauge noninvariant quantity. This generalizes the R ↔ 1/R symmetry in which momenta and windings are exchanged, to the whole O(d,d,ℤ). The crucial point is that, with a transformation, it is possible always to have all of the lowest eigenvalues of the Hamiltonian to be momentum modes. We interpret this in the framework of noncommutative geometry, in which algebras take the place of point spaces, and of the spectral action principle for which the eigenvalues of the Dirac operator are the fundamental objects, out of which the theory is constructed. A quantum observer, in the presence of many low energy eigenvalues of the Dirac operator (and hence of the Hamiltonian) will always interpreted the target space of the string theory as effectively uncompactified.


2009 ◽  
Vol 21 (10) ◽  
pp. 1197-1240 ◽  
Author(s):  
HISHAM SATI ◽  
URS SCHREIBER ◽  
JIM STASHEFF

We study the cohomological physics of fivebranes in type II and heterotic string theory. We give an interpretation of the one-loop term in type IIA, which involves the first and second Pontrjagin classes of spacetime, in terms of obstructions to having bundles with certain structure groups. Using a generalization of the Green–Schwarz anomaly cancellation in heterotic string theory which demands the target space to have a String structure, we observe that the "magnetic dual" version of the anomaly cancellation condition can be read as a higher analog of String structure, which we call Fivebrane structure. This involves lifts of orthogonal and unitary structures through higher connected covers which are not just 3- but even 7-connected. We discuss the topological obstructions to the existence of Fivebrane structures. The dual version of the anomaly cancellation points to a relation of string and Fivebrane structures under electric-magnetic duality.


1992 ◽  
Vol 07 (15) ◽  
pp. 1361-1366 ◽  
Author(s):  
SUDIPTA MUKHERJI

We analyze the β-function equations for string theory in the case when the target space has one space-like (or time-like) direction and the rest is some conformal field theory (CFT) with appropriate central charge and has one nearly marginal operator. We show there always exists a space-(time) dependent solution which interpolates between the original background and the background where CFT is replaced by a new conformal field theory, obtained by perturbing CPT by the nearly marginal operator.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ziqi Yan

Abstract Nonrelativistic string theory is a self-contained corner of string theory, with its string spectrum enjoying a Galilean-invariant dispersion relation. This theory is unitary and ultraviolet complete, and can be studied from first principles. In these notes, we focus on the bosonic closed string sector. In curved spacetime, nonrelativistic string theory is defined by a renormalizable quantum nonlinear sigma model in background fields, following certain symmetry principles that disallow any deformation towards relativistic string theory. We review previous proposals of such symmetry principles and propose a modified version that might be useful for supersymmetrizations. The appropriate target-space geometry determined by these local spacetime symmetries is string Newton-Cartan geometry. This geometry is equipped with a two-dimensional foliation structure that is restricted by torsional constraints. Breaking the symmetries that give rise to such torsional constraints in the target space will in general generate quantum corrections to a marginal deformation in the worldsheet quantum field theory. Such a deformation induces a renormalization group flow towards sigma models that describe relativistic strings.


2000 ◽  
Vol 15 (12) ◽  
pp. 1707-1756 ◽  
Author(s):  
G. V. KRANIOTIS

In this work, we review recent work on string cosmology. The need for an inflationary era is well known. Problems of Standard Cosmology such as horizon, flatness, monopole and entropy find an elegant solution in the inflationary scenario. On the other hand no adequate inflationary model has been constructed so far. In this review we discuss the attempts that have been made in the field of string theory for obtaining an adequate Cosmological Inflationary Epoch. In particular, orbifold compactifications of string theory which are constrained by target-space duality symmetry offer as natural candidates for the role of inflatons the orbifold moduli. Orbifold moduli dynamics is very constrained by duality symmetry and offers a concrete framework for discussing Cosmological Inflation. We discuss the resulting cosmology assuming that nonperturbative dynamics generates a moduli potential which respects target-space modular invariance. Various modular forms for the nonperturbative superpotential and Kähler potential which include the absolute modular invariant j(T) besides the Dedekind eta function η(T) are discussed. We also review scale-factor duality and pre-Big-Bang scenarios in which inflation is driven by the kinetic terms of the dilaton modulus. In this context we discuss the problem of graceful exit and review recent attempts for solving the problem of exiting from inflation. The possibility of obtaining inflation through the D-terms in string models with anomalous UA(1) and other Abelian factors is reviewed. In this context we discuss how the slow-roll problem in supergravity models with F-term inflation can be solved by D-term inflation. We also briefly review the consequences of duality for a generalized Heisenberg uncertainty principle and the structure of space–time at short scales. The problem of the Cosmological Constant is also briefly discussed.


1993 ◽  
Vol 08 (30) ◽  
pp. 5409-5440
Author(s):  
MÅNS HENNINGSON

We initiate a program to study the relationship between the target space, the spectrum and the scattering amplitudes in string theory. We consider scattering amplitudes following from string theory and quantum field theory on a curved target space, which is taken to be the SU(2) group manifold, with special attention given to the duality between contributions from different channels. We give a simple example of the equivalence between amplitudes coming from string theory and quantum field theory, and compute the general form of a four-scalar field-theoretical amplitude. The corresponding string theory calculation is performed for a special case, and we discuss how more general string theory amplitudes could be evaluated.


1998 ◽  
Vol 13 (08) ◽  
pp. 1229-1262 ◽  
Author(s):  
MAKOTO NATSUUME ◽  
YUJI SATOH

We investigate the string theory on three-dimensional black holes discovered by Bañados, Teitelboim and Zanelli in the framework of conformal field theory. The model is described by an orbifold of the [Formula: see text] WZW model. The spectrum is analyzed by solving the level matching condition and we obtain winding modes. We then study the ghost problem and show explicit examples of physical states with negative norms. We discuss the tachyon propagation and the target space geometry, which are irrelevant to the details of the spectrum. we find a self-dual T-duality transformation reversing the black hole mass. We also discuss difficulties in string theory on curved space–time and possibilities of obtaining a sensible string theory on three-dimensional black holes. This work is the first attempt to quantize a string theory in a black hole background with an infinite number of propagating modes.


Sign in / Sign up

Export Citation Format

Share Document