Structure, morphology and Raman and optical spectroscopic analysis of In 1−x Cu x P thin films grown by MOCVD technique for solar cell applications

2017 ◽  
Vol 95 ◽  
pp. 29-35 ◽  
Author(s):  
Ahmed Alshahrie ◽  
S. Juodkazis ◽  
A.A. Al-Ghamdi ◽  
M. Hafez ◽  
L.M. Bronstein
2020 ◽  
Vol 59 (10) ◽  
pp. 105503
Author(s):  
Wafaa Magdy ◽  
Ayaka Kanai ◽  
F. A. Mahmoud ◽  
E. T. El Shenawy ◽  
S. A. Khairy ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 02037-1-02037-6
Author(s):  
Ranjitha R. ◽  
◽  
T. K. Subramanyam ◽  
S. Pavan kumar ◽  
Nagesh M ◽  
...  

2018 ◽  
Vol 10 (3) ◽  
pp. 03005-1-03005-6 ◽  
Author(s):  
Rupali Kulkarni ◽  
◽  
Amit Pawbake ◽  
Ravindra Waykar ◽  
Ashok Jadhawar ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuejian Ma ◽  
Fei Zhang ◽  
Zhaodong Chu ◽  
Ji Hao ◽  
Xihan Chen ◽  
...  

AbstractThe outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3 thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 μs and 10 μs correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3~5 μm) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.


1998 ◽  
Vol 545 ◽  
Author(s):  
J. C. Caylor ◽  
A. M. Stacy ◽  
T. Sands ◽  
R. Gronsky

AbstractBulk skutterudite phases based on the CoAs3 structure have yielded compositions with a high thermoelectric figure-of-merit (“ZT”) through the use of doping and substitutional alloying. It is postulated that further enhancements in ZT may be attained in artificially structured skutterudites by engineering the microstructure to enhance carrier mobility while suppressing the phonon component of the thermal conductivity. In this work the growth and properties of singlephase CoSb3 and IrSb3 skutterudite thin films are reported. The films are synthesized by pulsed laser deposition (PLD) where the crystallinity can be controlled by the deposition temperature. Powder X-ray diffraction (PXRD), Transmission electron microscopy (TEM) and Rutherford- Back Scattering (RBS) were used to probe phase, structure, morphology and stoichiometry of the films as functions of growth parameters and substrate type. A substrate temperature of 250°C was found to be optimal for the deposition of the skutterudites from stoichiometric targets. Above this temperature the film is depleted of antimony due to its high vapor pressure eventually reaching a composition where the skutterudite structure is no longer stable. However, when films are grown from antimony-rich targets the substrate temperature can be increased to at least 350°C while maintaining the skutterudite phase. In addition, adhesion properties of the films are explored in terms of the growth mode and substrate interaction. Finally, preliminary room temperature electrical and thermal measurements are reported.


2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


Sign in / Sign up

Export Citation Format

Share Document