Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa

2020 ◽  
Vol 31 ◽  
pp. 101810
Author(s):  
Vanesa Pérez-Laguna ◽  
Isabel García-Luque ◽  
Sofía Ballesta ◽  
Luna Pérez-Artiaga ◽  
Verónica Lampaya-Pérez ◽  
...  
2020 ◽  
Vol 33 ◽  
Author(s):  
Ítalo Dany Cavalcante Galo ◽  
Jéssica Assis Carvalho ◽  
Jessyca Luana Melo Costa Santos ◽  
Alexandre Braoios ◽  
Rodrigo Paschoal Prado

Abstract Introduction: Considering its potential as an alternative therapy to combat multiresistant bacteria, photodynamic therapy has been improved and better studied in recent years, and determining its optimized application patterns is important. Objective: This study aimed to evaluate the action of antimicrobial photodynamic therapy mediated by methylene blue in the absence of preincubation of infectious agents in the photosensitizer. Method: Standard strains of Staphylococcus aureus and Pseudomonas aeruginosa were used, which was or was not submitted to two methylene blue concentrations (0.1 μg/mL and 500 mg/mL) applied alone or in combination with a variety of red laser emission parameters (660 nm); in both cases, the streak was performed immediately after mixing between the photosensitizer and the solution containing the bacteria. Results: In the dishes with only methylene blue application neither antibacterial was produced, nor inhibition at the application points of the photodynamic therapy in the case of the bacterium Pseudomonas aeruginosa. However, in the cultures of Staphylococcus aureus in which laser emission was associated with the concentration of 500 mg/mL of the photosensitizer, inhibition was present at the laser application points. Conclusion: The time of exposure to the photosensitizer prior to the application of phototherapy seems to be an essential factor for the optimized action of photodynamic therapy, especially in the case of Gram-negative bacteria.


2019 ◽  
Vol 22 (1) ◽  
pp. Process
Author(s):  
Jessica Klöckner Knorst ◽  
Gabriela Scarton Barriquello ◽  
Marcos Antônio Villetti ◽  
Roberto Christ Vianna Santos ◽  
Karla Zanini Kantorski

Objective: Evaluate methylene blue (MB) formulations containing oxygen carrier at different pHs in antimicrobial photodynamic therapy (aPDT). Material and Methods: Biofilms of Pseudomonas aeruginosa PA01 formed over acrylics specimens during five days were treated with aPDT using different formulations: MB/pH 7.4; MB/pH 5.6; MB/carrier pH 7.4; MB/carrier pH 5.6. Biofilms not exposed to treatment were used as a control. Blind examiner for the experimental groups performed the counting of colonies per ml suspension (CFU/ml). Two-way ANOVA was used to determine the effect of factors solvent (carrier vs water) and pH (7.4 vs 5.6). One-way ANOVA and post-hoc Tukey’s test was used to evaluate differences among the five groups (control; MB/carrier pH 7.4; MB pH 7.4; MB/carrier pH 5.6; MB pH 5.6). The Statistics 8.0 software was used (P<0.05). Results: All of photodynamic therapy groups showed significant reduction in P. aeruginosa compared to the control group. The solvent factor was not significant (P=0.18), while the pH factor presented statistical significance (P=0.01). When the carrier was used, MB formulation at pH 7.4 presented a statistically greater reduction of P. aeruginosa than the formulation with pH 5.6. Conclusion: The PDT using methylene blue formulations with oxygen carrier demonstrated potential for the treatment of localized infections by P. aeruginosa. MB formulations with oxygen carrier and pH 7.4 resulted in higher antimicrobial effect and should be considered for future studies with multispecies biofilms.  KeywordsAntimicrobial photodynamic therapy; biofilm; laser; Pseudomonas aeruginosa.


Author(s):  
Carlos Garin ◽  
Teresa Alejo ◽  
Vanesa Pérez Laguna ◽  
Martin Prieto ◽  
Gracia Mendoza ◽  
...  

Synergistic antimicrobial effects were observed for copper sulfide (CuS) nanoparticles together with indocyanine green (ICG) in the elimination of wild type pathogenic bacteria (Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa...


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 709 ◽  
Author(s):  
Paramanantham Parasuraman ◽  
Thamanna R. Y ◽  
Chitra Shaji ◽  
Alok Sharan ◽  
Ali H. Bahkali ◽  
...  

The persistence of multidrug resistance among microorganisms has directed a mandate towards a hunt for the development of alternative therapeutic modalities. In this context, antimicrobial photodynamic therapy (aPDT) is sprouted as a novel strategy to mitigate biofilms and planktonic cells of pathogens. Nanoparticles (NPs) are reported with unique intrinsic and antimicrobial properties. Therefore, silver NPs (AgNPs) were investigated in this study to determine their ability to potentiate the aPDT of photosensitizer against Staphylococcus aureus and Pseudomonas aeruginosa. Biologically synthesized AgNPs were surface coated with methylene blue (MB) and studied for their aPDT against planktonic cells and biofilms of bacteria. The nano-conjugates (MB-AgNPs) were characterized for their size, shape and coated materials. MB-AgNPs showed significant phototoxicity against both forms of test bacteria and no toxicity was observed in the dark. Moreover, activity of MB-AgNPs was comparatively higher than that of the free MB, which concludes that MB-AgNPs could be an excellent alternative to combat antibiotic resistant bacteria.


Sign in / Sign up

Export Citation Format

Share Document