Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray

2006 ◽  
Vol 67 (15) ◽  
pp. 1621-1628 ◽  
Author(s):  
Bernardo M.T. da Costa ◽  
Jay D. Keasling ◽  
Colleen M. McMahan ◽  
Katrina Cornish
1977 ◽  
Vol 164 (1) ◽  
pp. 193-198 ◽  
Author(s):  
F Gibson ◽  
G B Cox ◽  
J A Downie ◽  
J Radik

A new mutant strain of Escherichia coli in which phosphorylation is uncoupled from electron transport was isolated. The new mutant strain has a similar phenotype to the uncB mutant described previously; results from reconstitution experiments in vitro indicate that the new mutation also affects a component of the F0 portion of the Mg2+-stimulated adenosine triphosphatase. A method was developed to incorporate mutant unc alleles into plasmids. Partial diploid strains were prepared in which the uncB402 allele was incorporated into the plasmid and the new unc mutation into the chromosome, or vice versa. Complementation between the mutant unc alleles was indicated by growth on succinate, growth yields on glucose, ATP-dependent transhydrogenase activities, ATP-induced atebrin-fluorescence quenching and oxidative-phosphorylation measurements. The gene in which the new mutation occurs is therefore distinct from the uncB gene, and the mutant allele was designated uncC424.


2008 ◽  
Vol 69 (14) ◽  
pp. 2539-2545 ◽  
Author(s):  
Wenshuang Xie ◽  
Colleen M. McMahan ◽  
Amanda J. DeGraw ◽  
Mark D. Distefano ◽  
Katrina Cornish ◽  
...  
Keyword(s):  

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 674
Author(s):  
Tomoko Yamaguchi ◽  
Yukio Kurihara ◽  
Yuko Makita ◽  
Emiko Okubo-Kurihara ◽  
Ami Kageyama ◽  
...  

Natural rubber is the main component of latex obtained from laticifer cells of Hevea brasiliensis. For improving rubber yield, it is essential to understand the genetic molecular mechanisms responsible for laticifer differentiation and rubber biosynthesis. Jasmonate enhances both secondary laticifer differentiation and rubber biosynthesis. Here, we carried out time-course RNA-seq analysis in suspension-cultured cells treated with methyljasmonic acid (MeJA) to characterize the gene expression profile. Gene Ontology (GO) analysis showed that the term “cell differentiation” was enriched in upregulated genes at 24 h after treatment, but inversely, the term was enriched in downregulated genes at 5 days, indicating that MeJA could induce cell differentiation at an early stage of the response. Jasmonate signaling is activated by MYC2, a basic helix–loop–helix (bHLH)-type transcription factor (TF). The aim of this work was to find any links between transcriptomic changes after MeJA application and regulation by TFs. Using an in vitro binding assay, we traced candidate genes throughout the whole genome that were targeted by four bHLH TFs: Hb_MYC2-1, Hb_MYC2-2, Hb_bHLH1, and Hb_bHLH2. The latter two are highly expressed in laticifer cells. Their physical binding sites were found in the promoter regions of a variety of other TF genes, which are differentially expressed upon MeJA exposure, and rubber biogenesis-related genes including SRPP1 and REF3. These studies suggest the possibilities that Hb_MYC2-1 and Hb_MYC2-2 regulate cell differentiation and that Hb_bHLH1 and Hb_bHLH2 promote rubber biosynthesis. We expect that our findings will help to increase natural rubber yield through genetic control in the future.


Blood ◽  
1968 ◽  
Vol 32 (1) ◽  
pp. 49-58 ◽  
Author(s):  
HERBERT E. KANN ◽  
CHARLES E. MENGEL ◽  
WILHELM D. MERIWETHER ◽  
LARRY EBBERT

Abstract The concept that production of a "perfect" PNH RBC, artificially, might supply information as to the nature of the defect(s) in PNH RBCs was the basis for a study in which normal RBCs were studied after preincubation in concentrated, alkaline solutions of reduced glutathione. These RBCs exhibited the following features of PNH RBCs. 1. Sensitivity to lysis by acidified serum a. pH optimum identical to that of PNH RBCs b. complete prevention by prior heating of serum to 56° C for 30 minutes c. complete prevention by addition of dextran to serum d. complete prevention by removal of magnesium ion from serum, reversed by re-addition of magnesium ion to serum 2. Positive thrombin lysis test. 3. Positive sucrose lysis test. 4. No agglutination in type-compatible serum. 5. No greater than normal agglutination in serum containing isoantibodies or elevated titers of cold agglutinins, but marked enhancement of lytic sensitivity to these antibodies, identical to that achieved with "natural" PNH cells. 6. Positive Hegglin-Maier test. 7. Decreased acetylcholinesterase activity. 8. Increased lysis and lipid peroxide formation during incubation with hydrogen peroxide. The broad scope of these similarities permits cautious speculation that some biochemical feature(s) of PNH RBCs may have been produced in normal RBCs, artificially. The mechanism by which reduced glutathione produces the change is uncertain, but may involve either oxidation of membrane lipid or splitting of membrane protein disulfide bonds, or both.


1936 ◽  
Vol 9 (4) ◽  
pp. 633-643
Author(s):  
D. Spence ◽  
C. B. Van Niel

Abstract A RECENT communication (6) has shown by several different means that rubber present in the living plant actually disappears under seasonal and other conditions in the life of the plant, and that it can, therefore, no longer be regarded as an excretory product of metabolism of no physiological value to the plant. The results recorded were obtained in a study of the rubber content of Parthenium argentatum, but they will undoubtedly be found to hold for Hevea brasiliensis when suitable methods of investigation are developed for the latter. The importance of these findings in relation to the economic development of rubber is obvious and far-reaching. They have already been applied in the cultural development and exploitation of Parthenium argentatum. On the scientific side they suggest a more intimate study of the behavior of the rubber hydrocarbon towards oxidation-reduction processes occurring within the living plant and to the effect of such agencies on the rubber itself in vitro. That rubber is readily attacked by oxidizing agents in general is now well known. But even the classical researches of Harries on the products of decomposition of the rubber hydrocarbon by means of ozone (1) have thrown little light on the ways and means by which the rubber in the plant is first produced and thereafter broken down and utilized in its cycle of yearly development. This is not surprising when we consider the reagents heretofore employed and the drastic character of the decompositions effected by them.


2015 ◽  
Vol 112 (40) ◽  
pp. 12444-12449 ◽  
Author(s):  
Eric J. Hayden ◽  
Devin P. Bendixsen ◽  
Andreas Wagner

Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins.


2002 ◽  
Vol 96 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Rika Sasaki ◽  
Koki Hirota ◽  
Sheldon H. Roth ◽  
Mitsuaki Yamazaki

Background Magnesium ion (Mg2+) is involved in important processes as modulation of ion channels, receptors, neurotransmitter release, and cell excitability in the central nervous system. Although extracellular Mg2+ concentration ([Mg2+]o) can be altered during general anesthesia, there has been no evidence for [Mg2+]o-dependent modification of anesthetic actions on neural excitability in central nervous system preparations. The purpose of current study was to determine whether the effects of volatile anesthetics are [Mg2+]o-dependent in mammalian central nervous system. Methods Extracellular electrophysiologic recordings from CA1 neurons in rat hippocampal slices were used to investigate the effects of [Mg2+]o and anesthetics on population spike amplitude and excitatory postsynaptic potential slope. Results The depression of population spike amplitudes and excitatory postsynaptic potential slopes by volatile anesthetics were significantly dependent on [Mg2+]o. The effects were attenuated in the presence of a constant [Mg2+]o/extracellular Ca2+ concentration ratio. However, neither N-methyl-d-aspartate receptor antagonists nor a non-N-methyl-d-aspartate receptor antagonist altered the [Mg2+]o-dependent anesthetic-induced depression of population spikes. Volatile anesthetics produced minimal effects on input-output (excitatory postsynaptic potential-population spike) relations or the threshold for population spike generation. The effects were not modified by changes in [Mg2+]o. In addition, the population spike amplitudes, elicited via antidromic (nonsynaptic) stimulation, were not influenced by [Mg2+]o in the presence of volatile anesthetics. Conclusions These results provide support that alteration of [Mg2+]o modifies the actions of volatile anesthetics on synaptic transmission and that the effects could be, at least in part, a result of presynaptic Ca2+ channel-related mechanisms.


2002 ◽  
Vol 127 (3) ◽  
pp. 404-408 ◽  
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray), a latex-producing perennial desert shrub and potential industrial crop for semiarid regions, exhibits reproductive modes ranging from sexual, self-sterile diploids to predominantly apomictic, self-compatible polyploids. The objectives of this study were to develop and evaluate a rapid, simple technique for characterizing apomictic potential (percentage of ovules that produce apomictic embryos) in guayule breeding lines. Initial in vivo experiments were based on an auxin test that permitted quantification of apomictic frequency in grasses. In our trials, floral application of NAA or IBA resulted in embryo production similar to that of open-pollinated controls, but 2,4-D inhibited embryo production. Breeding lines could be separated based on embryo production using an in vivo auxin test; however, accuracy of the results was questionable because 1) pollen release and insect activity within isolation bags prevented distinguishing between sexual and apomictic embryos, and 2) high temperatures and large humidity fluctuations could have affected results. Thus, in vitro flower culture was investigated using liquid medium, because it would provide better control of these factors. Flowers developed normally in vitro, except that pollen was not released from the anthers; therefore, any embryos produced in vitro were considered to be apomictic. Embryo production was similar on both Nitsch and Nitsch and Woody Plant Media. Addition of growth regulators inhibited embryo production. Embryo production was tested on Nitsch and Nitsch medium without growth regulators for seven breeding lines. Based on statistical analyses, four classes of apomictic potential were identified, ranging from none (sexual) to high. Chemical names used: 2,4-dichlorophenoxy acetic acid (2,4-D); indole-3-butyric acid (IBA); α-naphthaleneacetic acid (NAA).


Planta ◽  
2017 ◽  
Vol 247 (2) ◽  
pp. 513-526 ◽  
Author(s):  
Hiroyuki Kajiura ◽  
Nobuaki Suzuki ◽  
Hiroshi Mouri ◽  
Norie Watanabe ◽  
Yoshihisa Nakazawa

Sign in / Sign up

Export Citation Format

Share Document