Variability of primary production among basins in the East/Japan Sea: Role of water column stability in modulating nutrient and light availability

2019 ◽  
Vol 178 ◽  
pp. 102173
Author(s):  
Rubao Ji ◽  
Meibing Jin ◽  
Yun Li ◽  
Yun-Ho Kang ◽  
Chang-Keun Kang
2018 ◽  
Vol 123 (8) ◽  
pp. 5777-5796 ◽  
Author(s):  
Brian Dzwonkowski ◽  
Severine Fournier ◽  
Kyeong Park ◽  
Steven L. Dykstra ◽  
John T. Reager

2020 ◽  
Vol 17 (20) ◽  
pp. 5043-5055
Author(s):  
Zhengchen Zang ◽  
Z. George Xue ◽  
Kehui Xu ◽  
Samuel J. Bentley ◽  
Qin Chen ◽  
...  

Abstract. We introduced a sediment-induced light attenuation algorithm into a biogeochemical model of the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. A fully coupled ocean–atmospheric–sediment–biogeochemical simulation was carried out to assess the impact of sediment-induced light attenuation on primary production in the northern Gulf of Mexico during the passage of Hurricane Gustav in 2008. When compared with model results without sediment-induced light attenuation, our new model showed a better agreement with satellite data on both the magnitude of nearshore chlorophyll concentration and the spatial distribution of offshore bloom. When Hurricane Gustav approached, resuspended sediment shifted the inner shelf ecosystem from a nutrient-limited one to a light-limited one. Only 1 week after Hurricane Gustav's landfall, accumulated nutrients and a favorable optical environment induced a posthurricane algal bloom in the top 20 m of the water column, while the productivity in the lower water column was still light-limited due to slow-settling sediment. Corresponding with the elevated offshore NO3 flux (38.71 mmol N m−1 s−1) and decreased chlorophyll flux (43.10 mg m−1 s−1), the outer shelf posthurricane bloom should have resulted from the cross-shelf nutrient supply instead of the lateral dispersed chlorophyll. Sensitivity tests indicated that sediment light attenuation efficiency affected primary production when sediment concentration was moderately high. Model uncertainties due to colored dissolved organic matter and parameterization of sediment-induced light attenuation are also discussed.


2019 ◽  
Vol 174 ◽  
pp. 105-116 ◽  
Author(s):  
Juan Höfer ◽  
Ricardo Giesecke ◽  
Mark J. Hopwood ◽  
Vania Carrera ◽  
Emilio Alarcón ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 347-368
Author(s):  
J. A. Placencia ◽  
N. Harada ◽  
R. Torres ◽  
C. B. Lange ◽  
D. Hebbeln

Abstract. We present a reconstruction of past changes in partial pressure of CO2 (pCO2) from northern Chile (~27° S), between 10 and 30 kyr BP, based on carbon isotope composition of C37:2-alkenone. The high-pCO2 during the entire time series indicates that northern Chile upwelling system has been a permanent source of CO2 to the atmosphere. The multiproxy reconstruction suggests that the CO2 outgassing and sequestration pathways were modulated by local and global mechanisms. During global glacial conditions, an enhanced coastal upwelling forcing resulted in high-availability of deep water macronutrients and a CO2-supersaturated water column, which combined with high-inputs of iron from the continent, intensified the carbon sequestration pathway of the biological pump, through diatom biomass export. During the deglacial, a decrease in the upwelling forcing, an increment in water column stability and reduced continental inputs of iron are consistent with a larger role of calcifying organisms in the plankton assemblage in terms of carbon sequestration pathway through the carbonate system.


Author(s):  
Akihiro Shiomoto ◽  
Yushi Kamuro

Abstract In Saroma-ko Lagoon, where scallop aquaculture is a thriving commercial activity, monitoring primary production is essential for determining the amount of scallops that can be farmed. Using the primary production data obtained so far, we calculated Ψ, an index of water-column light utilization efficiency, and clarified its seasonal variation. Ψ tended to be lower in the spring bloom season (February–April), and higher in the late autumn to winter (October–December). Low chlorophyll-normalized production, an index of growth rate, resulted in lower values, while low daily irradiance resulted in higher values. The values of Ψ from our study had a range of 0.05–1.42 gC gChl-a−1 mol photons−1 m2 (N = 56). These values were within the previously reported range of 0.07–1.92 (gC gChl-a−1 mol photons−1 m2) for seawater and fresh water worldwide. Therefore, it is likely that Ψ varies from 0.05–2 gC gChl-a−1 mol photons−1 m2, being affected by conditions of phytoplankton growth and sunlight intensity, regardless of whether samples are collected from seawater or fresh water. Using the median Ψ value of 0.45 gC gChl-a−1 mol photons−1 m2 obtained in this study, primary production was 0.3–3.5 times the actual production at Saroma-ko Lagoon. Using this method, primary production can be easily and constantly monitored, facilitating the sustainable development of scallop aquaculture.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 318 ◽  
Author(s):  
Mikkel René Andersen ◽  
Elvira de Eyto ◽  
Mary Dillane ◽  
Russell Poole ◽  
Eleanor Jennings

While winter storms are generally common in western Europe, the rarer summer storms may result in more pronounced impacts on lake physics. Using long-term, high frequency datasets of weather and lake thermal structure from the west of Ireland (2005 to 2017), we quantified the effects of storms on the physical conditions in a monomictic, deep lake close to the Atlantic Ocean. We analysed a total of 227 storms during the stratified (May to September, n = 51) and non-stratified (November to March, n = 176) periods. In winter, as might be expected, changes were distributed over the entire water column, whereas in summer, when the lake was stratified, storms only impacted the smaller volume above the thermocline. During an average summer (May–September) storm, the lake number dropped by an order of magnitude, the thermocline deepened by an average of 2.8 m, water column stability decreased by an average of 60.4 j m−2 and the epilimnion temperature decreased by a factor of five compared to the average change in winter (0.5 °C vs. 0.1 °C). Projected increases in summer storm frequency will have important implications for lake physics and biological pathways.


2013 ◽  
Vol 185 (8) ◽  
pp. 6831-6846 ◽  
Author(s):  
Masumi Koriyama ◽  
Yuichi Hayami ◽  
Akane Koga ◽  
Koichi Yamamoto ◽  
Alim Isnasetyo ◽  
...  

2012 ◽  
Vol 69 (5) ◽  
pp. 955-969 ◽  
Author(s):  
Sara E. Miller ◽  
Milo Adkison ◽  
Lewis Haldorson

Water column stability has been hypothesized to affect growth and ultimately survival of juvenile fish. We estimated the relationships between stability and the growth, condition, and marine survival of several stocks of pink salmon ( Oncorhynchus gorbuscha ) within Prince William Sound (PWS), Alaska, USA, and the northern coastal Gulf of Alaska (GOA) shelf. There was a stronger correlation among the biological parameters of the fish than between the biological parameters and physical conditions. While stability and fish condition during early marine residence in PWS were important to year-class survival, stability of the water column that juveniles experienced as they migrated to the open waters of the GOA did not play a key role in determining survival to adulthood. Below-average stability just prior to capture within PWS combined with positive fish condition was related to increased year-class survival. Our results are similar to previous studies that concluded that slower and weaker development of stratification with a deeper mixed layer depth may be important for juvenile pink salmon survival in PWS.


2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


Sign in / Sign up

Export Citation Format

Share Document