Experimental study of particle size, shape and particle flow rate on Erosion of stainless steel

2018 ◽  
Vol 336 ◽  
pp. 70-79 ◽  
Author(s):  
Nan Lin ◽  
H. Arabnejad ◽  
S.A. Shirazi ◽  
B.S. McLaury ◽  
Huiqing Lan
2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


2001 ◽  
Vol 32 (4-6) ◽  
pp. 5
Author(s):  
A. P. Sevast'yanov ◽  
I. V. An ◽  
S. I. Vainshtein ◽  
Yu. A. Sevast'yanov ◽  
A. V. Sidnev ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


Author(s):  
Zuhaili Idham ◽  
Ahmad Syahmi Zaini ◽  
Nicky Rahmana Putra ◽  
Nurfarhain Mohamed Rusli ◽  
Noor Sabariah Mahat ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2189
Author(s):  
Tingchao Yu ◽  
Xiangqiu Zhang ◽  
Iran E. Lima Neto ◽  
Tuqiao Zhang ◽  
Yu Shao ◽  
...  

The traditional orifice discharge formula used to estimate the flow rate through a leak opening at a pipe wall often produces inaccurate results. This paper reports an original experimental study in which the influence of orifice-to-pipe diameter ratio on leakage flow rate was investigated for several internal/external flow conditions and orifice holes with different shapes. The results revealed that orifice-to-pipe diameter ratio (or pipe wall curvature) indeed influenced the leakage flow, with the discharge coefficient ( C d ) presenting a wide variation (0.60–0.85). As the orifice-to-pipe diameter ratio decreased, the values of C d systematically decreased from about 12% to 3%. Overall, the values of C d also decreased with β (ratio of pressure head differential at the orifice to wall thickness), as observed in previous studies. On the other hand, orifice shape, main pipe flow velocity, and external medium (water or air) all had a secondary effect on C d . The results obtained in the present study not only demonstrated that orifice-to-pipe diameter ratio affects the outflow, but also that real scale pipes may exhibit a relevant deviation of C d from the classical range (0.61–0.67) reported in the literature.


2014 ◽  
Vol 936 ◽  
pp. 1694-1700
Author(s):  
Zhi Wei Li ◽  
Kai Yong Jiang ◽  
Fei Wang ◽  
Ji Liang Zhang

This paper mainly introduces the mechanism of microwave heating: electric conduction loss, eddy current loss and arc discharge. The microwave heating behavior of 316 stainless steel powder body which made by gel casting was investigated in the paper. Experiments on different microwave power, powder particle size, and the content of auxiliary heating material showed that the smaller the powder particle size, the larger microwave power and auxiliary heating materials help 316 stainless steel body for sintering.


2018 ◽  
Vol 152 ◽  
pp. 02015
Author(s):  
Yoong Sion Ong ◽  
Ken Sim Ong ◽  
Y.k. Tan ◽  
Azadeh Ghadimi

A conventional design of rainwater harvesting system collects and directs the rainwater through water piping from roof of building to the water storage. The filtration system which locates before the water tank storage and first flush bypass system is the main focus of the research. A filtration system consists of a control volume of filter compartment, filter screen (stainless steel mesh) and water piping that direct the water flow. The filtration efficiency of an existing filter “3P Volume Filter VF1” by industrial company is enhanced. A full scale filter design prototype with filter screen of 1000 μm stainless steel metal mesh is tested to compare with the original filter system design. Three types of water inlet setups are tested. Among the proposed water inlet setups, the 90° inlet setup with extension provides the best filtration rate per unit time, following by the 45° inlet setup. The 45° and 90° inlet setup has similar filtration efficiency at low to medium flow rate while 45° inlet setup has better efficiency at high flow rate. The filtration efficiency with the 90° inlet setup with extension is observed to maintain at highest value at medium to high flow rate. The overall filtration performance achieved by the 90° inlet setup with extension at low to high flow rate is between 34.1 to 35.7%.


2015 ◽  
Vol 651-653 ◽  
pp. 830-835
Author(s):  
Shohei Kajikawa ◽  
Riku Sakagami ◽  
Takashi Iizuka

Thermal flow tests were performed on steamed bamboo powder using capillaries that were processed under different conditions in order to investigate the effect of the die surface state on the fluidity of the woody powder. The capillaries were processed by wire-cut electric discharge machining, reaming or drilling, and the arithmetic average roughness (Ra) varied from 0.5 to 2.5 μm. The bamboo powder was first steamed at 200 °C for 20 min, and its particle size was then controlled using different mesh screens. The thermal flow temperature was set at 200 °C. The results indicated that the flow behavior improved with increasing particle size. For the capillaries processed by WEDM, the flow rate for samples with particle sizes of 75~150 and 150~300 μm decreased with increasing Ra. On the other hand, when reaming or drilling was used to process the capillaries, the flow rate was almost independent of Ra, regardless of the particle size.


Sign in / Sign up

Export Citation Format

Share Document