scholarly journals The effect of sodium bisulfate and coccidiostat on intestinal lesions and growth performance of Eimeria spp.–challenged broilers

2020 ◽  
Vol 99 (10) ◽  
pp. 4769-4775
Author(s):  
Mariam Talghari ◽  
Alireza Behnamifar ◽  
Shaban Rahimi ◽  
Mohammad Amir Karimi Torshizi ◽  
Robert Beckstead ◽  
...  
Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 524
Author(s):  
Vasilios Tsiouris ◽  
Ilias Giannenas ◽  
Eleftherios Bonos ◽  
Elias Papadopoulos ◽  
Ioanna Stylianaki ◽  
...  

One-hundred and fifty, one-day-old Ross-308 female chicks were randomly allocated to five equal treatments: NCONTR negative control—not challenged; PCONTR positive control—challenged; PHERB1 and PHERB2 diets were supplemented with phytogenic formula (1 and 2 g/kg feed, respectively)—challenged; PSALIN diet was supplemented with salinomycin (60 mg/kg feed)—challenged. Challenge was made by oral inoculation with 3.5 × 104 E. acervulina, 7.0 × 103 E. maxima and 5.0 × 103 E. tenella oocysts, at 14 days of age. One week post inoculation, bloody diarrhea, oocysts numbers, and intestinal lesions were evaluated, along with intestinal microbiota, viscosity, and pH of digesta, and histopathology. PHERB2 had a comparable (p ≤ 0.001) growth performance and feed conversion ratio to PSALIN. PHERB1 and PHERB2 had similar (p ≤ 0.001) oocyst counts to PSALIN and lower than PCONTROL. PHERB2 and PSALIN had lower (p ≤ 0.001) jejunal, ileal, and cecal lesion scores compared to PCONTR. PHERB1 and PHERB2 had higher (p ≤ 0.001) jejunal and cecal lactobacilli and lower (p ≤ 0.001) coliform counts compared to other treatments. PCONTR had lower (p ≤ 0.001) jejunum villus height, height to crypt ratio, and villus goblet cells. Breast and thigh meat resistance to oxidation was improved (p ≤ 0.001) in PHERB1 and PHERB2 compared to the PCONTR. The polyherbal formula exerted a substantial improvement on growth performance and intestinal health of the Eimeria-challenged birds.


2021 ◽  
Author(s):  
Luis-Miguel Gómez-Osorio ◽  
Jenny-Jovana Chaparro-Gutiérrez ◽  
Sara López-Osorio

Eimeria spp. are parasites specialized in invade and replicate in the intestine, causing coccidiosis, an enteric disease of major economic importance worldwide. The disease causes losses in production and high morbidity ranging from bloody enteritis, with high mortality, to being subclinical silent but affecting feed intake and efficiency. However, intestinal lesions of the infection vary, depending on the species of coccidia. The most important Eimeria species in poultry are: E. tenella, E. acervulina, E. maxima, E. necatrix, E. mitis, E. praecox and E. brunetti. All those species affect different anatomic sites of the intestine. Thus, they alter the homeostasis of the host reducing nutrient absorption and utilization. Nutritional factors are key players in several steps of the coccidiosis disease. Firstly, as a susceptibility or protection factor, secondly, during the process of infection and pathogenesis, and thirdly, in the recovery and compensatory growth of the bird. Otherwise, coccidiosis also triggers immune response in the intestine. To counter these complicated effects, there are nutritional strategies (including formulation of key amino acids, vitamins, short and medium chain fatty acids, prebiotics, enzymes, among others) that can be utilized to reduce the infection, alleviate the signs, and boost the compensatory growth after infection. This chapter review the impacts of coccidiosis in nutrition and discuss about of strategies to mitigate these risks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanyuan Wang ◽  
Yibin Xu ◽  
Shengliang Xu ◽  
Jinyong Yang ◽  
Kaiying Wang ◽  
...  

Along with banning antibiotics, necrotic enteritis (NE), especially subclinical enteritis (SNE), poses a significant threat to the chicken industry; however, probiotics are a potentially promising intervention. We aimed to investigate the beneficial effects of Bacillus subtilis DSM29784 (BS) on the treatment of Clostridium perfringens (CP)-induced SNE in broilers. A total of 360 1-day-old broiler chicks were divided into three treatment groups, namely control (Ctr), SNE, and BS treatment (BST) groups, all of which were fed with a basal died for 21days, and then from day 22 onward, only the BST group had a BS supplemented diet (1×109 colony-forming units BS/kg). On day 15, all chicks, except the Ctr group, were challenged with a 20-fold dose coccidiosis vaccine and 1ml CP (2×108) on days 18–21 for SNE induction. Beneficial effects were observed on growth performance in BST compared to SNE broilers. BST treatment alleviated intestinal lesions and increased the villus height/crypt depth ratio. Further, BST broilers showed increased maltase activity in the duodenum compared with SNE chicks, and a significantly decreased caspase-3 protein expression in the jejunum mucosa. Moreover, an increased abundance of Ruminococcaceae and Bifidobacterium beneficial gut bacteria and an altered gut metabolome were observed. Taken together, we demonstrate that the manipulation of microbial gut composition using probiotics may be a promising prevention strategy for SNE by improving the composition and metabolism of the intestinal microbiota, intestinal structure, and reducing inflammation and apoptosis. Hence, BS potentially has active ingredients that may be used as antibiotic substitutes and effectively reduces the economic losses caused by SNE. The findings of this study provide a scientific foundation for BS application in broiler feed in the future.


2020 ◽  
Vol 99 (11) ◽  
pp. 5844-5857
Author(s):  
Fernanda L.S. Castro ◽  
Po-Yun Teng ◽  
Sudhir Yadav ◽  
Rebecca L. Gould ◽  
Steven Craig ◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 611-615 ◽  
Author(s):  
Musangu Ngeleka ◽  
Dale Godson ◽  
Ghyslaine Vanier ◽  
Gabriel Desmarais ◽  
Chris Wojnarowicz ◽  
...  

Calf diarrhea is a common cause of pre-weaning morbidity and mortality in cattle operations. We evaluated the role of Escherichia coli by assessing the frequency of genes encoding virulence factors (virotypes) in E. coli from feces or intestinal contents, and the association of these virotypes or other diarrheagenic pathogens with intestinal morphologic changes in calves with or without diarrhea. E. coli was isolated from 408 feces and 105 intestines of calves with diarrhea and compared to those isolated from 635 feces and 100 intestines of calves without diarrhea, from 2002 to 2016. Virotype EAST1:F17, in combination with minor virotypes, was the most commonly detected type, but without differences in frequency between the 2 groups of calves. No significant intestinal morphologic changes were observed with the different E. coli virotypes in either group of calves, except for bacterial attachment to enterocytes for virotype STa:F5, which was detected only in calves with diarrhea. These observations suggest that E. coli, excluding virotype STa:F5, is not a significant diarrhea-causing agent in calves. However, the intestinal lesions observed in ~82% of calves with diarrhea were attributed to other diarrheagenic pathogens that include bovine coronavirus, Clostridium perfringens, Cryptosporidium spp., Eimeria spp., rotavirus, and Salmonella spp.


Sign in / Sign up

Export Citation Format

Share Document