scholarly journals Model for the performance of photovoltaic systems

2018 ◽  
Vol 5 (10) ◽  
pp. 805-821
Author(s):  
Amaury de Souza

In this article, the future in photovoltaic energy productivity (PVE) is evaluated using climate variables simulated aerosol clearness index and solar irradiance, it is a model for the performance of photovoltaic systems. The analysis indicates that the aerosol emission reductions in the near future result in an increase in global warming with a significant response of the solar surface radiation and associated PVE productivity. Changes in radiation surface and productivity of solar PVE are related to overall reduction in aerosol effects on the circulation and large scale associated with cloud coverage pattern, rather than local atmospheric effects on optical properties. PVE evaluation is then discussed in the context of the current situation and the PV market highlighting the effects on productivity induced by industrial and public policies, while technological development are comparable to the effects related to the weather. The results presented encourage the improvement and further use of climate models in the assessment of future availability for renewable energy.

2018 ◽  
Vol 18 (14) ◽  
pp. 10177-10198 ◽  
Author(s):  
Sonya L. Fiddes ◽  
Matthew T. Woodhouse ◽  
Zebedee Nicholls ◽  
Todd P. Lane ◽  
Robyn Schofield

Abstract. Natural aerosol emission represents one of the largest uncertainties in our understanding of the radiation budget. Sulfur emitted by marine organisms, as dimethyl sulfide (DMS), constitutes one-fifth of the global sulfur budget and yet the distribution, fluxes and fate of DMS remain poorly constrained. This study evaluates the Australian Community Climate and Earth System Simulator (ACCESS) United Kingdom Chemistry and Aerosol (UKCA) model in terms of cloud fraction, radiation and precipitation, and then quantifies the role of DMS in the chemistry–climate system. We find that ACCESS-UKCA has similar cloud and radiation biases to other global climate models. By removing all DMS, or alternatively significantly enhancing marine DMS, we find a top of the atmosphere radiative effect of 1.7 and −1.4 W m−2 respectively. The largest responses to these DMS perturbations (removal/enhancement) are in stratiform cloud decks in the Southern Hemisphere's eastern ocean basins. These regions show significant differences in low cloud (-9/+6 %), surface incoming shortwave radiation (+7/-5 W m−2) and large-scale rainfall (+15/-10 %). We demonstrate a precipitation suppression effect of DMS-derived aerosol in stratiform cloud deck regions due to DMS, coupled with an increase in low cloud fraction. The difference in low cloud fraction is an example of the aerosol lifetime effect. Globally, we find a sensitivity of temperature to annual DMS flux of 0.027 and 0.019 K per Tg yr−1 of sulfur, respectively. Other areas of low cloud formation, such as the Southern Ocean and stratiform cloud decks in the Northern Hemisphere, have a relatively weak response to DMS perturbations. We highlight the need for greater understanding of the DMS–climate cycle within the context of uncertainties and biases of climate models as well as those of DMS–climate observations.


2021 ◽  
Author(s):  
Victor P. Kuslikis

Integrating photovoltaic systems into the urban landscape is fundamental to the wide scale acceptance of the technology. It is also one of the major factors currently limiting its popularity, coupled with high costs, and the lack of adequate storage methods. Contributing to the lack of architectural integration are shortcomings in design tools and an overall lack of forward thinking proposals suggesting how society can begin implementing solar power on a large scale. Research conducted by the International Energy Agency 'Task 41: Solar Energy and Architecture' has identified the need for more developed toolsets to help designers quantify solar exposure and shading coefficients during the conceptual design phase. Although software to calculate incident surface radiation is available, it is largely detached from the traditional design process and workflow. What is required to improve the architectural integration of photovoltaic systems is a new design methodology. A method that must be both inherently flexible and quantifiable, so that designers can validate and modify designs quickly and efficiently. In a process where innovative digital tools combined with the intuition of the designer expand the creative possibilities of intelligent solar architecture. The aim of the project is to develop a new design methodology by combining parametric and environmental analysis tools, providing quantitative performance indicators in order to assist architects at the early design stage. Using case studies, the project will demonstrate how this methodology is applicable to a wide array of project typologies within an urban context. In addition to demonstrating the applicability of the system, the case studies would also illustrate the potential for photvoltaic installations to alter the landscape of the city and facilitate a fresh dialogue between public space and renewable energy generation.


2021 ◽  
Author(s):  
Victor P. Kuslikis

Integrating photovoltaic systems into the urban landscape is fundamental to the wide scale acceptance of the technology. It is also one of the major factors currently limiting its popularity, coupled with high costs, and the lack of adequate storage methods. Contributing to the lack of architectural integration are shortcomings in design tools and an overall lack of forward thinking proposals suggesting how society can begin implementing solar power on a large scale. Research conducted by the International Energy Agency 'Task 41: Solar Energy and Architecture' has identified the need for more developed toolsets to help designers quantify solar exposure and shading coefficients during the conceptual design phase. Although software to calculate incident surface radiation is available, it is largely detached from the traditional design process and workflow. What is required to improve the architectural integration of photovoltaic systems is a new design methodology. A method that must be both inherently flexible and quantifiable, so that designers can validate and modify designs quickly and efficiently. In a process where innovative digital tools combined with the intuition of the designer expand the creative possibilities of intelligent solar architecture. The aim of the project is to develop a new design methodology by combining parametric and environmental analysis tools, providing quantitative performance indicators in order to assist architects at the early design stage. Using case studies, the project will demonstrate how this methodology is applicable to a wide array of project typologies within an urban context. In addition to demonstrating the applicability of the system, the case studies would also illustrate the potential for photvoltaic installations to alter the landscape of the city and facilitate a fresh dialogue between public space and renewable energy generation.


2017 ◽  
Author(s):  
Sonya L. Fiddes ◽  
Matthew T. Woodhouse ◽  
Zebedee Nicholls ◽  
Todd P. Lane ◽  
Robyn Schofield

Abstract. Natural aerosol emission represents one of the largest uncertainties in our understanding of the climate system. Sulfur emitted by marine organisms, as dimethyl sulfide (DMS), constitutes one fifth of the global sulfur budget and yet the distribution, fluxes and fate of DMS remain poorly constrained. In this study we quantify the role of DMS in the chemistry-climate system and determine the climate's response to large DMS perturbations. By removing all marine DMS in the Australian Community Climate and Earth System Simulator (ACCESS) – United Kingdom Chemistry and Aerosol (UKCA), we find a top of atmosphere radiative effect of 1.7 W m−2. The largest responses to removing marine DMS are in stratiform cloud decks in the Southern Hemisphere's eastern ocean basins. These regions show significant differences in low-cloud (−9 %), radiation (+7 W m−2 in short wave incoming surface radiation) and large-scale rainfall (+15 %) when all DMS is removed. We demonstrate a precipitation suppression effect of DMS-derived aerosol in stratiform cloud deck regions, coupled with an increase in low cloud fraction. The increase in low cloud fraction is an example of the aerosol lifetime effect. Other areas of low cloud formation, such as the Southern Ocean and stratiform cloud decks in the Northern Hemisphere, have a relatively weak response to DMS perturbations. Our study highlights the need for further modelling and field studies of natural aerosols and their impact on cloud and precipitation, in particular in Southern Hemisphere stratiform cloud regions.


2000 ◽  
Vol 151 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Stephan Wild-Eck ◽  
Willi Zimmermann

Two large-scale surveys looking at attitudes towards forests, forestry and forest policy in the second half ofthe nineties have been carried out. This work was done on behalf of the Swiss Confederation by the Chair of Forest Policy and Forest Economics of the Federal Institute of Technology (ETH) in Zurich. Not only did the two studies use very different methods, but the results also varied greatly as far as infrastructure and basic conditions were concerned. One of the main differences between the two studies was the fact that the first dealt only with mountainous areas, whereas the second was carried out on the whole Swiss population. The results of the studies reflect these differences:each produced its own specific findings. Where the same (or similar) questions were asked, the answers highlight not only how the attitudes of those questioned differ, but also views that they hold in common. Both surveys showed positive attitudes towards forests in general, as well as a deep-seated appreciation ofthe forest as a recreational area, and a positive approach to tending. Detailed results of the two surveys will be available in the near future.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
JiJi Fan ◽  
Zhong-Zhi Xianyu

Abstract Light fields with spatially varying backgrounds can modulate cosmic preheating, and imprint the nonlinear effects of preheating dynamics at tiny scales on large scale fluctuations. This provides us a unique probe into the preheating era which we dub the “cosmic microscope”. We identify a distinctive effect of preheating on scalar perturbations that turns the Gaussian primordial fluctuations of a light scalar field into square waves, like a diode. The effect manifests itself as local non-Gaussianity. We present a model, “modulated partial preheating”, where this nonlinear effect is consistent with current observations and can be reached by near future cosmic probes.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1422
Author(s):  
Ousama Al Shanaa ◽  
Andrey Rumyantsev ◽  
Elena Sambuk ◽  
Marina Padkina

RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 551
Author(s):  
Sofia Spyridonidou ◽  
Georgia Sismani ◽  
Eva Loukogeorgaki ◽  
Dimitra G. Vagiona ◽  
Hagit Ulanovsky ◽  
...  

In this work, an innovative sustainable spatial energy planning framework is developed on national scale for identifying and prioritizing appropriate, technically and economically feasible, environmentally sustainable as well as socially acceptable sites for the siting of large-scale onshore Wind Farms (WFs) and Photovoltaic Farms (PVFs) in Israel. The proposed holistic framework consists of distinctive steps allocated in two successive modules (the Planning and the Field Investigation module), and it covers all relevant dimensions of a sustainable siting analysis (economic, social, and environmental). It advances a collaborative and participatory planning approach by combining spatial planning tools (Geographic Information Systems (GIS)) and multi-criteria decision-making methods (e.g., Analytical Hierarchy Process (AHP)) with versatile participatory planning techniques in order to consider the opinion of three different participatory groups (public, experts, and renewable energy planners) within the site-selection processes. Moreover, it facilitates verification of GIS results by conducting appropriate field observations. Sites of high suitability, accepted by all participatory groups and field verified, form the final outcome of the proposed framework. The results illustrate the existence of high suitable sites for large-scale WFs’ and PVFs’ siting and, thus, the potential deployment of such projects towards the fulfillment of the Israeli energy targets in the near future.


Sign in / Sign up

Export Citation Format

Share Document