scholarly journals Estimating wave energy flux from significant wave height and peak period

2020 ◽  
Vol 155 ◽  
pp. 1383-1393 ◽  
Author(s):  
Nicolas Guillou
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marcello Passaro ◽  
Mark A. Hemer ◽  
Graham D. Quartly ◽  
Christian Schwatke ◽  
Denise Dettmering ◽  
...  

AbstractCoastal studies of wave climate and evaluations of wave energy resources are mainly regional and based on the use of computationally very expensive models or a network of in-situ data. Considering the significant wave height, satellite radar altimetry provides an established global and relatively long-term source, whose coastal data are nevertheless typically flagged as unreliable within 30 km of the coast. This study exploits the reprocessing of the radar altimetry signals with a dedicated fitting algorithm to retrieve several years of significant wave height records in the coastal zone. We show significant variations in annual cycle amplitudes and mean state in the last 30 km from the coastline compared to offshore, in areas that were up to now not observable with standard radar altimetry. Consequently, a decrease in the average wave energy flux is observed. Globally, we found that the mean significant wave height at 3 km off the coast is on average 22% smaller than offshore, the amplitude of the annual cycle is reduced on average by 14% and the mean energy flux loses 38% of its offshore value.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


Author(s):  
Zhenjia (Jerry) Huang ◽  
Qiuchen Guo

In wave basin model test of an offshore structure, waves that represent the given sea states have to be generated, qualified and accepted for the model test. For seakeeping and stationkeeping model tests, we normally accept waves in wave calibration tests if the significant wave height, spectral peak period and spectrum match the specified target values. However, for model tests where the responses depend highly on the local wave motions (wave elevation and kinematics) such as wave impact, green water impact on deck and air gap tests, additional qualification checks may be required. For instance, we may need to check wave crest probability distributions to avoid unrealistic wave crest in the test. To date, acceptance criteria of wave crest distribution calibration tests of large and steep waves of three-hour duration (full scale) have not been established. The purpose of the work presented in the paper is to provide a semi-empirical nonlinear wave crest distribution of three-hour duration for practical use, i.e. as an acceptance criterion for wave calibration tests. The semi-empirical formulas proposed in this paper were developed through regression analysis of a large number of fully nonlinear wave crest distributions. Wave time series from potential flow simulations, computational fluid dynamics (CFD) simulations and model test results were used to establish the probability distribution. The wave simulations were performed for three-hour duration assuming that they were long-crested. The sea states are assumed to be represented by JONSWAP spectrum, where a wide range of significant wave height, peak period, spectral peak parameter, and water depth were considered. Coefficients of the proposed semi-empirical formulas, comparisons among crest distributions from wave calibration tests, numerical simulations and the semi-empirical formulas are presented in this paper.


Author(s):  
Leonardo Roncetti ◽  
Fabrício Nogueira Corrêa ◽  
Carl Horst Albrecht ◽  
Breno Pinheiro Jacob

Lifting operations with offshore cranes are fundamental for proper functioning of a platform. Despite the great technological development, offshore cranes load charts only consider the significant wave height as parameter of environmental load, neglecting wave period, which may lead to unsafe or overestimated lifting operations. This paper aims to develop a method to design offshore crane operational limit diagrams for lifting of personnel and usual loads, in function of significant wave height and wave peak period, using time domain dynamic analysis, for a crane installed on a floating unit. The lifting of personnel with crane to transfer between a floating unit and a support vessel is a very used option in offshore operations, and this is in many cases, the only alternative beyond the helicopter. Due to recent fatal accidents with lifting operations in offshore platforms, it is essential the study about this subject, contributing to the increase of safety. The sea states for analysis were chosen covering usual significant wave heights and peak periods limits for lifting operations. The methodology used the SITUA / Prosim software to obtain the dynamic responses of the personnel transfer basket lifting and container loads on a typical FPSO. Through program developed by the author, it was implemented the automatic generation of diagrams as a function of operational limits. It is concluded that using this methodology, it is possible to achieve greater efficiency in the design and execution of personnel and routine load lifting, increasing safety and a wider weather window available.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5098
Author(s):  
Budi Azhari ◽  
Fransisco Danang Wijaya ◽  
Edwar Yazid

For generating electricity, direct-drive wave energy converters (WECs) with linear permanent magnet generators (LPMGs) have advantages in terms of efficiency, simplicity, and force-to-weight ratio over WEC with rotary generators. However, the converter’s work under approaching-real wave conditions should be investigated. This paper studies the performance of a pico-scale WEC with two different LPMGs under unidirectional long-crested random waves. Different significant wave heights (using data in the Southern Ocean of Yogyakarta, Indonesia) and peak frequencies are tested. The JONSWAP energy spectrum is used to extract the wave elevations, while the MSS toolbox in MATLAB Simulink is employed to solve the floater’s dynamic responses. Next, the translator movements are extracted and combined with the flux distribution from FEMM simulation and analytical calculation, and the output powers are obtained. An experiment is conducted to test the output under constant speed. The results show for both designs, different tested significant wave height values produce higher output powers than peak frequency variation, but there is no specific trend on them. Meanwhile, the peak frequency is inversely proportional to the output power. Elimination of the non-facing events results in increasing output power under both parameters’ variation, with higher significant wave height resulting in a bigger increase. The semi iron-cored LPMG produces lower power loss and higher efficiency.


Author(s):  
Catarina S. Soares ◽  
C. Guedes Soares

This paper presents the results of a comparison of the fit of three bivariate models to a set of 14 years of significant wave height and peak wave period data from the North Sea. One of the methods defines the joint distribution from a marginal distribution of significant wave height and a set of distributions of peak period conditional on significant wave height. Other method applies the Plackett model to the data and the third one applies the Box-Cox transformation to the data in order to make it approximately normal and then fits a bivariate normal distribution to the transformed data set. It is shown that all methods provide a good fit but each one have its own strengths and weaknesses, being the choice dependent on the data available and applications in mind.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2087
Author(s):  
Jie Dong ◽  
Jian Shi ◽  
Jianchun Zhao ◽  
Chi Zhang ◽  
Haiyan Xu

A wave hindcast, covering the period of 1979–2018, was preformed to assess wave energy potential in the Bohai Sea and the Yellow Sea. The hindcase was carried out using the third generation wave model TOMAWAC with high spatio-temporal resolution (about 1 km and on an hourly basis). Results show that the mean values of significant wave height increase from north to south, and the maximum values are located at the south part of the Yellow Sea with amplitude within 1.6 m. The magnitudes of significant wave height values vary significantly within seasons; they are at a maximum in winter. The wave energy potential was represented by distributions of the wave power flux. The largest values appear in the southeast part of the numerical domain with wave power flux values of 8 kW/m. The wave power flux values are less than 2 kW/m in the Bohai Sea and nearshore areas of the Yellow Sea. The seasonal mean wave power flux was found up to 8 kW/m in the winter and autumn. To investigate the exploitable wave energy, a wave energy event was defined based on the significant wave height (Hs) threshold values of 0.5 m. The wave energy in south part of the Yellow Sea is more steady and intensive than in the other areas. Wave energy in winter is more suitable for harvesting wave energy. Long-term trends of wave power availability suggest that the values of wave power slightly decreased in the 1990s, whereas they have been increasing since 2006.


1992 ◽  
Vol 114 (4) ◽  
pp. 278-284 ◽  
Author(s):  
C. Guedes Soares ◽  
M. C. Nolasco

The spectral models of individual wave systems have one peak and are described by theoretical models that have gained general acceptance. This work deals with sea states with more than one wave system, leading to spectral models with two or more peaks. Use is made of spectra derived from measurements off the Portuguese Coast and data is provided as to their probability of occurrence as well as about the dependence of the spectral parameters on the significant wave height and peak period. It is shown that wind-dominated and swell-dominated two-peaked spectra tend to occur in different areas of the scatter diagram. The spectral parameters of the two-peaked spectra show little correlation with significant wave height and peak period.


Author(s):  
Felice Arena ◽  
Valentina Laface ◽  
Giovanni Malara ◽  
Alessandra Romolo

The design of an energy harvester involves achieving the two following objectives: to install a safe structure with a reasonable safety margin; and to install an effective device which is able to capture energy in a variety of environmental conditions. In this context, the long-term modelling of the environmental variables plays a crucial role. In the context of wave energy harvesters, the occurrence of sea storms is a critical element in the design process. Indeed, its identification is required for determining extreme loads as well as controlled de-activations of the device for preserving the mechanical components into the device. Considering these issues, the paper proposes an analysis of the wave climate oriented to the determination of the downtime and of the energy losses. Specifically, the paper provides expressions: for calculating the average deactivation time of a wave energy device, given that it must be deactivated if the significant wave height is larger than a certain threshold; and for calculating the energy “lost” (as it is not absorbed by the device) during a storm in which the maximum wave height is larger than the mentioned threshold. The paper shows that closed-form expressions can be obtained by relying on the Equivalent Triangular Storm (ETS) model and that the adequacy of the estimations improves for larger values of the significant wave height threshold.


Sign in / Sign up

Export Citation Format

Share Document