Lightweight construction: First composite gearbox housing with layer-optimized organo sheeting weighs 30% less than a comparable aluminum component

2019 ◽  
Vol 63 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Thomas Schneider
2015 ◽  
Vol 105 (10) ◽  
pp. 697-703
Author(s):  
J. Wälder ◽  
A. Felde ◽  
M. Liewald ◽  
O. Napierala ◽  
M. Haase ◽  
...  

Als Beitrag zur Gewichtsreduktion von Komponenten im Antriebsstrang moderner PKWs wird am IFU Stuttgart und am IUL Dortmund ein neues Verfahren zur Herstellung hohler Bauteile mittels Querfließpressen entwickelt. Aufbauend auf ersten Machbarkeitsuntersuchungen werden in dieser Veröffentlichung Maßnahmen gezeigt, mit denen das herstellbare Geometriespektrum hinsichtlich der Verfahrensgrenze gegen Risse erweitert sowie eine Verbesserung der Formabweichung erreicht werden kann.   As a contribution towards a reduction in weight of automotive drive train components, a new process for producing hollow components by lateral extrusion is being developed at the Institute for Metal Forming Technology (IFU) in Stuttgart and the Institute of Forming Technology and Lightweight Construction (IUL) in Dortmund. Based upon first feasibility studies, methods are shown in this publication to extend the spectrum of the producible geometries and to achieve a high level of form accuracy.


2008 ◽  
Vol 43 ◽  
pp. 89-96 ◽  
Author(s):  
Eduard Ungemach ◽  
Tobias Surmann ◽  
Andreas Zabel

Lightweight extrusion profiles with reinforcement elements are promising news in the domain of lightweight construction. The machining of them suffers from several problems: Aside from the question of choosing a suitable tool, feed rate, and milling strategy, an excessive rise in temperature could lead to stress and even a distortion due to the differing thermal expansion of the reinforcement material and the surrounding matrix material. A simulation of the milling process could, in addition to force and collision calculations, recognize this case before manufacturing. For certain milling applications like seal surfaces, a certain roughness of the manufactured surface is necessary. In many other cases, a smooth surface of very high quality is desirable. Available simulation systems usually completely lack the simulation of dynamic effects, which have a great effect on the final surface quality, and therefore are not able to predict the resulting surface quality. In this paper simulation methods are presented that are capable of simulating the dynamic behavior of the tool in the milling process and the resulting flank and ground surface structures. Additionally, a fast temperature simulation for heterogeneous workpieces with reinforcement elements, which is based on the finite difference method and cellular automata, is introduced.


1975 ◽  
Author(s):  
M. R. Garde

This paper presents a discussion on aircraft type gas-turbine train development. For railway traction purposes, the turbo-engines used on aircraft would improve the quality of the services provided in the electrified lines. The gas turbine should insure high speed and satisfactory acceleration. It would enable relatively lightweight construction to be carried out and run at a higher speed than trains on non-electrified lines. The gas turbine will not completely replace the diesel engine, but it will enable rolling stock to be constructed for which the diesel is unsuitable, especially in the case of high-speed, lightweight trainsets and, in the future, very high-powered units.


2018 ◽  
Vol 7 (2.29) ◽  
pp. 927 ◽  
Author(s):  
Bishir Kado ◽  
Shahrin Mohammad ◽  
Yeong Huei Lee ◽  
Poi Ngian Shek ◽  
Mariyana Aida Ab Kadir

Lightweight construction is aimed to achieve a sustainable feature by reducing transportation frequency and construction materials usage during construction phase. Lightweight precast concrete may serve an alternative for the lightweight construction. There are rarely application can be found for structural members as lightweight panels always to be used for secondary or non-load bearing members. This paper presents an experimental study on properties (compressive strength, splitting tensile strength, water absorption) of lightweight foamed concrete (LFC) at two different curing methods. LFC with densities of 1500, 1700, and 1800 kg/m3, cement-sand ratio of 2:1 and water-cement ratio of 0.5 were investigated. The results showed LFC can be produced with the properties ofdensity range of 1500 to 1800 kg/m3 and corresponding compressive strength of 10 to 39 MPa. The higher the density of LFC, the less the water absorption for all the curing method considered, the highest and the lowest water absorption was 11.3% and 2.0% for 1500 kg/m3 cured in water and 1800 kg/m3 cured in air respectively. Compressive strength of LFC increases with age and density while water cured LFC has high compressive strength. Splitting tensile strength increases with density of LFC, but air cured LFC has more splitting tensile strength than water cured of the same density. The highest splitting tensile strength recorded was 3.92 MPa for 1800 kg/m3 cured in air, which was about 16% of its compressive strength at 28 days of curing age. These properties are important and can be applied to LFC precast structural members with air or water curing method which have less references for LFC in structural usage.  


2013 ◽  
Vol 594-595 ◽  
pp. 503-510
Author(s):  
T.I.T. Noor Hasanah ◽  
D.C. Wijeyesekera ◽  
Ismail bin Bakar ◽  
Wahab Saidin

Applications of lightweight construction materials enable the design and construction in challenging, difficult and demanding scenarios. Construction materials with enhanced stiffness as in sandwich panels, large portable structures and floating foundations are examples of such materials. The advent of cellular structure technology has actively introduced innovation and enabled design and construction, meeting engineering requirements such as in the construction of the body of air crafts. Cellular mat structures present in the minimum, triple benefits in being lightweight, load sharing and minimising non-uniform deformation. This paper further explores the use of recycled plastic waste as the base material for an innovative geomaterial. The combination of cellular structure, mat structure and use of recycled waste material is a desirable development in manufacturing. Paper also outlines the techno social benefit of adopting such material in construction. Other application-specific benefits related to cellular mats are those like noise reduction, energy absorption, thermal insulation, mechanical damping. This paper specifically presents the development of a new multifunctional lightweight material is been proposed as an invective innovation for highway construction on challenging ground condition.


Author(s):  
Kai F. Karhausen ◽  
Antti S. Korhonen

Because of its lightweight and strength, aluminum alloys are used are being used increasing for the production of lightweight construction. In addition to applications in the expanding transportation market, aluminum sheet and foil materials are traditionally used for food and medical packaging, thin foil, and fin stock for air conditioners and heat exchangers, decorative panels and lithographic sheet. Rolling is a process used for the production of strip or sheet. In this article, rolling processing of aluminum and aluminum alloys is discussed in detail and specific processes include: hot-rolling, cold-rolling, and rolling of aluminum foils.


2021 ◽  
Vol 11 (16) ◽  
pp. 7559
Author(s):  
Elena Bassoli ◽  
Silvio Defanti ◽  
Emanuele Tognoli ◽  
Nicolò Vincenzi ◽  
Lorenzo Degli Esposti

High cost, unpredictable defects and out-of-tolerance rejections in final parts are preventing the complete deployment of Laser-based Powder Bed Fusion (LPBF) on an industrial scale. Repeatability, speed and right-first-time manufacturing require synergistic design approaches. In addition, post-build finishing operations of LPBF parts are the object of increasing attention to avoid the risk of bottlenecks in the machining step. An aluminum component for automotive application was redesigned through topology optimization and Design for Additive Manufacturing. Simulation of the build process allowed to choose the orientation and the support location for potential lowest deformation and residual stresses. Design for Finishing was adopted in order to facilitate the machining operations after additive construction. The optical dimensional check proved a good correspondence with the tolerances predicted by process simulation and confirmed part acceptability. A cost and time comparison versus CNC alone attested to the convenience of LPBF unless single parts had to be produced.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


Sign in / Sign up

Export Citation Format

Share Document