scholarly journals Pyrroloquinoline Quinone Alleviates Oxidative Damage Induced by High Glucose in HepG2 Cells

Author(s):  
Saad Alkahtani ◽  
Saud Alarifi ◽  
Abdullah A. Alkahtane ◽  
Gadah Albasher ◽  
Mohammed AL-Zharani ◽  
...  
2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


2005 ◽  
Vol 25 (4) ◽  
pp. 880-887 ◽  
Author(s):  
Peter Collins ◽  
Catherine Jones ◽  
Sarah Choudhury ◽  
Leonard Damelin ◽  
Humphrey Hodgson

2017 ◽  
Vol 42 (5) ◽  
pp. 1897-1906 ◽  
Author(s):  
Kai Dong ◽  
Pengjie Hao ◽  
Sheng Xu ◽  
Shutai Liu ◽  
Wenjuan Zhou ◽  
...  

Background/Aims: Patients with diabetes mellitus have a higher risk of dental implant failure. One major cause is high-glucose induced oxidative stress. Alpha-lipoic acid (ALA), a naturally occurring compound and dietary supplement, has been established as a potent antioxidant that is a strong scavenger of free radicals. However, few studies have yet investigated the effect of ALA on osteogenic differentiation of osteoblasts cultured with high glucose medium. The aim of this study is to investigate the effects of ALA on the osteoblastic differentiation in MC3T3-E1 cells under high glucose condition. Methods: MC3T3-E1 cells were divided into 4 groups including normal glucose (5.5 mM) group (control), high glucose (25.5 mM) group, high glucose + 0.1 mM ALA group, and high glucose + 0.2 mM ALA group. The proliferation, osteogenic differentiation and mineralization of cells were evaluated by MTT assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and real time-polymerase chain reaction. High-glucose induced oxidative damage was also assessed by the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Western blots were performed to examine the role of PI3K/Akt pathway. Results: The proliferation, osteogenic differentiation and mineralization of MC3T3-E1 cells were significantly decreased by the ROS induced by high-glucose. All observed oxidative damage and osteogenic dysfunction induced were inhibited by ALA. Moreover, the PI3K/Akt pathway was activated by ALA. Conclusions: We demonstrate that ALA may attenuate high-glucose mediated MC3T3-E1 cells dysfunction through antioxidant effect and modulation of PI3K/Akt pathway.


2016 ◽  
Vol 41 (2) ◽  
pp. e12313
Author(s):  
Hyeonmi Ham ◽  
Koan Sik Woo ◽  
Yu Young Lee ◽  
Byongwon Lee ◽  
In-Hwan Kim ◽  
...  

2018 ◽  
Vol 127 (09) ◽  
pp. 615-622 ◽  
Author(s):  
Toktam Razavi ◽  
Shideh Montasser Kouhsari ◽  
Khalil Abnous

Abstract Diabetes mellitus is a complex metabolic disease around the world that is characterized by hyperglycemia resulting from impaired insulin secretion, insulin action, or both. MicroRNA-29a is an important regulator of insulin signaling and gluconeogenesis pathways through IRS2, PI3K and PEPCK expressions which up regulates in Diabetes. Morin is a substantial bioflavonoid which has insulin mimetic effect, and interacting with nucleic acids and proteins. In this study HepG2 cells, were exposed to high glucose to induce diabetic condition. We have determined whether high glucose stimulation might promotes miR-29a expression level in HepG2 cells and subsequently evaluated the Morin treatment effects on this state. In HepG2 cells, high glucose increases miR-29a expression level and decreases its target genes, IRS2 and PI3K expression, and increases associated downstream gene in gluconeogenic pathway, PEPCK. Morin treatment down regulates miR-29a expression level and improves insulin signaling and glucose metabolism. To confirm the inhibitory effects of Morin on miR-29a, we have transfected cells with mimic and inhibitor-miR-29a. This study for the first time identifies that Morin improves diabetic condition through down regulation of the miR-29a level, and suggest that this new inhibitor of miR-29a may be a useful biomedicine to treat diabetes.


2021 ◽  
Vol 22 ◽  
Author(s):  
Lakshi A. Dayarathne ◽  
Sachithra S. Ranaweera ◽  
Premkumar Natraj ◽  
Priyanka Rajan ◽  
Young Jae Lee ◽  
...  

2014 ◽  
Vol 445 (1) ◽  
pp. 236-243 ◽  
Author(s):  
Tomoyuki Yuasa ◽  
Kikuko Amo ◽  
Shuhei Ishikura ◽  
Hisao Nagaya ◽  
Keiji Uchiyama ◽  
...  

The Analyst ◽  
2017 ◽  
Vol 142 (2) ◽  
pp. 284-291 ◽  
Author(s):  
Andrew Schmudlach ◽  
Jeremy Felton ◽  
Robert T. Kennedy ◽  
Norman J. Dovichi

Glucotoxicity is a causative agent of type-2 diabetes, where high glucose levels damage the islets of Langerhans resulting in oxidative damage and endoplasmic reticulum stress.


Sign in / Sign up

Export Citation Format

Share Document