A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics

2022 ◽  
pp. 113368
Author(s):  
P. Supraja ◽  
R. Rakesh Kumar ◽  
Siju Mishra ◽  
D. Haranath ◽  
R Ravi Sankar ◽  
...  
2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 607
Author(s):  
Lucero M. Hernandez-Cedillo ◽  
Francisco G. Vázquez-Cuevas ◽  
Rafael Quintero-Torres ◽  
Jose L. Aragón ◽  
Miguel Angel Ocampo Mortera ◽  
...  

In this article, we show an alternative low-cost fabrication method to obtain poly(dimethyl siloxane) (PDMS) microfluidic devices. The proposed method allows the inscription of micron resolution channels on polystyrene (PS) surfaces, used as a mold for the wanted microchip’s production, by applying a high absorption coating film on the PS surface to ablate it with a focused low-power visible laser. The method allows for obtaining micro-resolution channels at powers between 2 and 10 mW and can realize any two-dimensional polymeric devices. The effect of the main processing parameters on the channel’s geometry is presented.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Stelbin Peter Figerez ◽  
Sudeshna Patra ◽  
G Rajalakshmi ◽  
Tharangattu N Narayanan

Abstract Respiratory masks having similar standards of ‘N95’, defined by the US National Institute for Occupational Safety and Health, will be highly sought after, post the current COVID-19 pandemic. Here, such a low-cost (∼$1/mask) mask design having electrostatic rechargeability and filtration efficiency of &gt;95% with a quality factor of ∼20 kPa−1 is demonstrated. This filtration efficacy is for particles of size 300 nm. The tri-layer mask, named PPDFGO tri, contains nylon, modified polypropylene (PPY), and cotton nonwoven fabrics as three layers. The melt-spun PPY, available in a conventional N95 mask, modified with graphene oxide and polyvinylidene fluoride mixture containing paste using a simple solution casting method acts as active filtration layer. The efficacy of this tri-layer system toward triboelectric rechargeability using small mechanical agitations is demonstrated here. These triboelectric nanogenerator (TENG)-assisted membranes have high electrostatic charge retention capacity (∼1 nC/cm2 after 5 days in ambient condition) and high rechargeability even in very humid conditions (&gt;80% RH). A simple but robust permeability measurement set up is also constructed to test these TENG-based membranes, where a flow rate of 30–35 L/min is maintained during the testing. Such a simple modification to the existing mask designs enabling their rechargeability via external mechanical disturbances, with enhanced usability for single use as well as for reuse with decontantamination, will be highly beneficial in the realm of indispensable personal protective equipment.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jiajia Zhang ◽  
Guangcai Sun ◽  
Mengdao Xing ◽  
Zheng Bao ◽  
Fang Zhou

Multiple-input multiple-output (MIMO) synthetic aperture radar (SAR) using stepped frequency (SF) waveforms enables a high two-dimensional (2D) resolution with wider imaging swath at relatively low cost. However, only the stripmap mode has been discussed for SF MIMO-SAR. This paper presents an efficient algorithm to reconstruct the signal of SF MIMO-SAR in the spotlight and sliding spotlight modes, which includes Doppler ambiguity resolving algorithm based on subaperture division and an improved frequency-domain bandwidth synthesis (FBS) method. Both simulated and constructed data are used to validate the effectiveness of the proposed algorithm.


2020 ◽  
Vol 65 (4) ◽  
pp. 1-12
Author(s):  
Myles Morelli ◽  
Beckett Y. Zhou ◽  
Alberto Guardone

The development of low-cost and simple technologies to improve pilot awareness of icing environments is crucial to improve the safety of rotorcraft, and especially those with limited icing clearance which are admittedly operating within icing environments without full icing clearance. An acoustic characterization of glaze and rime ice structures is hereby introduced to begin to quantify different ice shape noise signatures which directly transcend from the iced performance characteristics to develop acoustic ice detection technologies. The feasibility of the detection technique is assessed for fully unsteady simulations of ice accretion on an oscillating, two-dimensional airfoil. This work focuses on the computational modeling of the experimental database of a rotor airfoil with pitching motion during icing conditions from the NASA Glenn Icing Research Wind Tunnel and computing the resultant noise signals and analyzing their topology.


2001 ◽  
Vol 19 (6) ◽  
pp. 593-600 ◽  
Author(s):  
O. Norberg ◽  
J. D. Winningham ◽  
H. Lauche ◽  
W. Keith ◽  
W. Puccio ◽  
...  

Abstract. The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second) allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.Key words. Ionosphere (instruments and techniques) – Magnetospheric physics (auroral phenomena; instruments and techniques)


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 787 ◽  
Author(s):  
Yun Yeol Ryu ◽  
Taekyung Kim ◽  
HyukSu Han

Zinc oxide (ZnO) has attractive photocatalytic properties. However, the high recombination rate of the photo-excited charge carriers on this material often restricts application. Here, we report that hybridization of one dimensional (1D) carbon nanotubes (CNT) on two dimensional (2D) porous ZnO nanosheets (NS) can be a promising strategy to overcome some of the challenges of ZnO. Specifically, a pulsed laser ablation technique was utilized to hybridize 1D CNT with 2D porous ZnO NS in environmentally friendly as well as super-economic (short time, less than 10 min) conditions. The synthesized ZnO NS-CNT hybrids show a significantly enhanced photocatalytic activity for water splitting relative to their counterpart ZnO NS.


Sign in / Sign up

Export Citation Format

Share Document