Selective C2H2 detection with high sensitivity using SnO2 nanorod based gas sensors integrated with a gas chromatography

2020 ◽  
Vol 307 ◽  
pp. 127598
Author(s):  
Jun Ho Lee ◽  
Min Sun Park ◽  
Hwaebong Jung ◽  
Yong-Sahm Choe ◽  
Wonkyung Kim ◽  
...  
2021 ◽  
Vol 22 (8) ◽  
pp. 4000
Author(s):  
Emilia Marchei ◽  
Maria Alias Ferri ◽  
Marta Torrens ◽  
Magí Farré ◽  
Roberta Pacifici ◽  
...  

The use of the new psychoactive substances is continuously growing and the implementation of accurate and sensible analysis in biological matrices of users is relevant and fundamental for clinical and forensic purposes. Two different analytical technologies, high-sensitivity gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) were used for a screening analysis of classic drugs and new psychoactive substances and their metabolites in urine of formed heroin addicts under methadone maintenance therapy. Sample preparation involved a liquid-liquid extraction. The UHPLC-HRMS method included Accucore™ phenyl Hexyl (100 × 2.1 mm, 2.6 μm, Thermo, USA) column with a gradient mobile phase consisting of mobile phase A (ammonium formate 2 mM in water, 0.1% formic acid) and mobile phase B (ammonium formate 2 mM in methanol/acetonitrile 50:50 (v/v), 0.1% formic acid) and a full-scan data-dependent MS2 (ddMS2) mode for substances identification (mass range 100–1000 m/z). The GC-MS method employed an ultra-Inert Intuvo GC column (HP-5MS UI, 30 m, 250 µm i.d, film thickness 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) and electron-impact (EI) mass spectra were recorded in total ion monitoring mode (scan range 40–550 m/z). Urine samples from 296 patients with a history of opioid use disorder were examined. Around 80 different psychoactive substances and/or metabolites were identified, being methadone and metabolites the most prevalent ones. The possibility to screen for a huge number of psychotropic substances can be useful in suspected drug related fatalities or acute intoxication/exposure occurring in emergency departments and drug addiction services.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
A. Tomescu ◽  
C. E. Simion ◽  
M. Scarisoreanu ◽  
...  

Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis ofFe(CO)5and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence ofNO2, CO, andCO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towardsNO2detection andNO2selectivity relatively to CO andCO2. An optimum working temperature of200°Cwas found.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1876
Author(s):  
Daneish Despot ◽  
Micaela Pacheco Fernández ◽  
Matthias Barjenbruch

Hydrogen sulfide (H2S) related to wastewater in sewer systems is known for causing significant problems of corrosion and odor nuisance. Sewer systems severely affected by H2S typically rely on online H2S gas sensors for monitoring and control. However, these H2S gas sensors only provide information about the H2S emission potential at the point being monitored, which is sometimes inadequate to design control measures. In this study, a comparison of three market-ready online sensors capable of liquid-phase H2S detection in sewer systems was assessed and compared. Two of the three sensors are based on UV/Vis spectrophotometry, while the other adapted the design and principles of a Clark-type electrochemical microsensor. The H2S measurements of the sensors were statistically compared to a standard laboratory method at first. Following that, the performance of the online sensors was evaluated under realistic sewer conditions using the Berlin Water Company (BWB) research sewer pilot plant. Test applications representing scenarios of typical H2S concentrations found in sulfide-affected sewers and during control measures were simulated. The UV/Vis spectrometers showed that the performance of the sensors was highly dependent on the calibration type and measurements used for deriving the calibration function. The electrochemical sensor showed high sensitivity by responding to alternating anaerobic/anoxic conditions simulated during nitrate dosing. All sensors were prone to measurement disturbances due to high amounts of sanitary solids in wastewater at the study site and required continuous maintenance for reliable measurements. Finally, a summary of the key attributes and limitations of the sensors compared for liquid phase H2S detection is outlined.


2019 ◽  
Vol 19 (3) ◽  
pp. 976-981
Author(s):  
Kihyun Kim ◽  
Hyeon-Tak Kwak ◽  
Hyeonsu Cho ◽  
M. Meyyappan ◽  
Chang-Ki Baek

2013 ◽  
Vol 823 ◽  
pp. 291-295 ◽  
Author(s):  
Shou Chen Chai ◽  
Peng Yang ◽  
Cheng Jia Yang ◽  
Chun Li Cai ◽  
Na Yu

In the space restricted airtight environment that people lives in, detecting harmful gas by miniature gas chromatography is the practical requirement at present, however, PIDs performance is key factor that restrict the application of miniature gas chromatography, the redesign of the detectors gas route in this paper aiming at improve detectors stability observably, and schemed out miniature PID with high sensitivity, low detection limit and fast response. The result of the experiment shows that the detection limit is 0.04ppm, the sensitivity is 101mv/ppm,the stability is 0.04×10-6/24h,meeting the project requirement. Keywords: photoionization detector; ionization chamber; sensitivity; detection limit;


2021 ◽  
Author(s):  
Zhen Wang ◽  
Hui Zhang ◽  
Qiang Wang ◽  
Simone Borri ◽  
Iacopo Galli ◽  
...  

Abstract Gas sensors with high sensitivity, wide dynamic range, high selectivity, fast response, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, designing a compact gas sensor with ultra-high sensitivity and ultra-wide dynamic range remains a challenge. Laser-based photoacoustic spectroscopy (PAS) is a promising candidate to fill this gap. Herein, we report a novel method to simultaneously enhance the acoustic and light waves for PAS using integrated optical and acoustic resonators. This increases sensitivity by more than two orders of magnitude and extends the dynamic range by more than three orders of magnitude, compared with the state-of-the-art photoacoustic gas sensors. We demonstrate the concept by exploiting a near-infrared absorption line of acetylene (C2H2) at 1531.59 nm, achieving a detection limit of 0.5 parts-per-trillion (ppt), a noise equivalent absorption (NEA) of 5.7×10-13 cm-1 and a linear dynamic range of eight orders of magnitude. This study enables the realization of compact ultra-sensitive and ultra-wide-dynamic-range gas sensors in a number of different fields.


Sign in / Sign up

Export Citation Format

Share Document