A flexible selection tool for the inclusion of soil biology methods in the assessment of soil multi-functionality

2021 ◽  
pp. 108514
Author(s):  
Marie J. Zwetsloot ◽  
Giulia Bongiorno ◽  
Janna M. Barel ◽  
D. Paolo di Lonardo ◽  
Rachel E. Creamer
Keyword(s):  
Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.


2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Honglin He ◽  
Rong Ge ◽  
Xiaoli Ren ◽  
Li Zhang ◽  
Qingqing Chang ◽  
...  

AbstractChinese forests cover most of the representative forest types in the Northern Hemisphere and function as a large carbon (C) sink in the global C cycle. The availability of long-term C dynamics observations is key to evaluating and understanding C sequestration of these forests. The Chinese Ecosystem Research Network has conducted normalized and systematic monitoring of the soil-biology-atmosphere-water cycle in Chinese forests since 2000. For the first time, a reference dataset of the decadal C cycle dynamics was produced for 10 typical Chinese forests after strict quality control, including biomass, leaf area index, litterfall, soil organic C, and the corresponding meteorological data. Based on these basic but time-discrete C-cycle elements, an assimilated dataset of key C cycle parameters and time-continuous C sequestration functions was generated via model-data fusion, including C allocation, turnover, and soil, vegetation, and ecosystem C storage. These reference data could be used as a benchmark for model development, evaluation and C cycle research under global climate change for typical forests in the Northern Hemisphere.


Author(s):  
Hashmath Inayath Hussain ◽  
Naga Kasinadhuni ◽  
Tony Arioli

AbstractThis study investigated the effects of seaweed extract (SWE) made from the brown algae Durvillaea potatorum and Ascophyllum nodosum on plants and soil. The application of SWE to soil growing tomato plants showed dual effects. SWE comprehensively improved tomato plant growth (flower clusters, flower number, fruit number, root length, root and shoot dry weight, SPAD) and increased plant productivity (yield and quality). Similarly, SWE application effected soil biology at the soil root zone by increasing total bacterial count and available soil nitrogen and impacting bacterial community diversity with an increase in certain bacterial families linked to soil health. A broader understanding of the effects of SWE on the plant-soil ecosystem may offer breakthrough approaches for sustainable food production.


2020 ◽  
Vol 150 ◽  
pp. 107894
Author(s):  
Yangquanwei Zhong ◽  
Jihong Hu ◽  
Qiongmei Xia ◽  
Shilai Zhang ◽  
Xin Li ◽  
...  

Aquaculture ◽  
2021 ◽  
Vol 540 ◽  
pp. 736747
Author(s):  
Eduardo B. Blödorn ◽  
William B. Domingues ◽  
Leandro S. Nunes ◽  
Eliza R. Komninou ◽  
Danillo Pinhal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document