Current saturation and kink effect in zero-bandgap double-gate silicene field-effect transistors

2017 ◽  
Vol 110 ◽  
pp. 155-161 ◽  
Author(s):  
Nishant Patel ◽  
Sudhanshu Choudhary
2021 ◽  
pp. 2101036
Author(s):  
Jiali Yi ◽  
Xingxia Sun ◽  
Chenguang Zhu ◽  
Shengman Li ◽  
Yong Liu ◽  
...  

2019 ◽  
Vol 7 (29) ◽  
pp. 8855-8860 ◽  
Author(s):  
Janghyuk Kim ◽  
Marko J. Tadjer ◽  
Michael A. Mastro ◽  
Jihyun Kim

The threshold voltage of β-Ga2O3 metal–insulator–semiconductor field-effect transistors is controlled via remote fluorine plasma treatment, enabling an enhancement-mode operation under double gate condition.


2012 ◽  
Vol 67 (6-7) ◽  
pp. 317-326 ◽  
Author(s):  
Alireza Heidari ◽  
Niloofar Heidari ◽  
Foad Khademi Jahromi ◽  
Roozbeh Amiri ◽  
Mohammadali Ghorbani

In this paper, first, the impact of different gate arrangements on the short-channel effects of carbon nanotube field-effect transistors with doped source and drain with the self-consistent solution of the three-dimensional Poisson equation and the Schr¨odinger equation with open boundary conditions, within the non-equilibrium Green function, is investigated. The results indicate that the double-gate structure possesses a quasi-ideal subthreshold oscillation and an acceptable decrease in the drain induced barrier even for a relatively thick gate oxide (5 nm). Afterward, the electrical characteristics of the double-gate carbon nanotube field-effect transistors (DG-CNTFET) are investigated. The results demonstrate that an increase in diameter and density of the nanotubes in the DG-CNTFET increases the on-state current. Also, as the drain voltage increases, the off-state current of the DG-CNTFET decreases. In addition, regarding the negative gate voltages, for a high drain voltage, increasing in the drain current due to band-to-band tunnelling requires a larger negative gate voltage, and for a low drain voltage, resonant states appear


Sign in / Sign up

Export Citation Format

Share Document