Room temperature ferromagnetism in ZnO (core)/graphite (shell) nanowires fabricated by a one-step method

2010 ◽  
Vol 150 (27-28) ◽  
pp. 1182-1186 ◽  
Author(s):  
I. Sameera ◽  
V. Prasad
2019 ◽  
Vol 7 (18) ◽  
pp. 10898-10904 ◽  
Author(s):  
Xu Jiang ◽  
Songwei Li ◽  
Yongping Bai ◽  
Lu Shao

An ultra-facile one-step method is discovered to synthesize defect-free ZIF-8 molecular sieve membranes in aqueous solution at room temperature for exceptional gas separation.


2014 ◽  
Vol 513-517 ◽  
pp. 246-250 ◽  
Author(s):  
Ying Xiong ◽  
Min Yang

The effects of different solvents on synthesis of base functional ionic liquid, butyl pyridinium hydroxide ([bPy]OH), from butyl pyridinium bromine ([bPy]Br) were investigated systematically using KOH/NaOH as the base agent and strong base anion exchange resin. The results showed that the yield of [bPy]OH achieved 35% with the molar ratio of 1:1.1 ([bPy]Br to NaOH) using dichloromethane under room temperature. With isopropanol and 8 h of the reaction time, the yield could reach 88% with byproducts. The yield of 97% without byproduct was achieved by using strong base anion exchange resin in column chromatography static reaction for 0.25 h. The yield of carboxyl and pyridine functional ionic liquids based on neutralization method, exchange method and one-step method were compared and the results showed that the one-step method possessed the maximum yield of 88% with 3 h of the reaction time at room temperature.


2021 ◽  
Vol 11 (5) ◽  
pp. 2034
Author(s):  
Ghadah M. Al-Senani ◽  
Omar H. Abd-Elkader ◽  
Nasrallah M. Deraz

The preparation of copper manganite (hopcalite, Cu1.5Mn1.5O4), as a single phase, was achieved by using a sustainable method of green synthesis. This method is based on the replacement of the conventional “brute force” ceramic preparation by the recent “soft force” green synthesis via the egg white assisted one-step method. In other words, we present a facile and rapid methodology to prepare the nanocrystalline Cu1.5Mn1.5O4 spinel as a single phase, compared to our previous work using ceramic and glycine-assisted combustion methods. The as-synthesized copper manganite was characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and scanning electron microscope (SEM). We used a vibrating sample magnetometer to determine the magnetic properties of the prepared sample (VSM). XRD, FTIR, SEM, EDS and transmittance electron micrograph (TEM) resulted in synthesis of a successful cubic spinel Cu1.5Mn1.5O4 system with a sponge crystal structure. The particles of the prepared materials are polycrystalline in their nature and the sizes ranged between 50 and 100 nm. The magnetic measurement demonstrated that the generated nanostructure has been found to exhibit ferromagnetism at room temperature with an optimum saturation magnetization value (0.2944 emu/g).


2021 ◽  
Author(s):  
Li Chen ◽  
Cailong Zhou ◽  
Hao Yang ◽  
Jia Lin ◽  
Yu Ge ◽  
...  

We report the preparation of a two-dimensional superhydrophobic covalent organic frameworks (COFs) coated cotton fabric by a rapid one-step method under room temperature. This COFs coated fabric was found to...


RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3789-3797 ◽  
Author(s):  
Shibin Thomas ◽  
Jeremy Mallet ◽  
Hervé Rinnert ◽  
Michael Molinari

A one-step method for the electrodeposition of silicon–erbium (Si/Er) and silicon–terbium (Si/Tb) thin films using room temperature ionic liquid (RTIL) has been successfully developed.


CrystEngComm ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 930-936 ◽  
Author(s):  
Xiaoqing Li ◽  
Xiangming Su ◽  
Ping Liu ◽  
Jie Liu ◽  
Zhiling Yao ◽  
...  

A red phosphor K2SiF6:Mn4+ nanorod is successfully prepared through an efficient one-step method at room temperature for 30 min. Under UV excitation, K2SiF6:Mn4+ nanorods show better red emission corresponding to the characteristic lines of Mn4+ compared to bulk materials.


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


Sign in / Sign up

Export Citation Format

Share Document