Effect of high temperature irradiation with 15 MeV protons on characteristics of power SiC Schottky diodes

2021 ◽  
pp. 108009
Author(s):  
Alexander A. Lebedev ◽  
Vitali V. Kozlovski ◽  
Michael E. Levinshtein ◽  
Anton E. Ivanov ◽  
Klava S. Davydovskaya
2018 ◽  
Vol 924 ◽  
pp. 217-220 ◽  
Author(s):  
Alexander A. Lebedev ◽  
Klavdia S. Davydovskaya ◽  
Anatoly M. Strel'chuk ◽  
Andrey N. Yakimenko ◽  
Vitalii V. Kozlovski

The change in the current-voltage characteristics and in Nd-Navalues in the base of 4H-SiC Schottky diodes and JBS diodes under irradiation with 0.9 MeV electrons and 15 MeV protons has been studied. The carrier removal rate for the diodes irradiated with electrons was 0.07-0.15 cm-1, and that in the case of protons, 50-70 cm-1. It was shown that the devices under study retain rectifying current-voltage characteristics up to electron doses of ~1017cm-2. It was found that the radiation resistance of the SiC-based devices significantly exceeds that of silicon p-i-n-diodes with similar breakdown voltages. The simultaneous effect of high temperature and proton irradiation on the characteristics of 4H-SiC pn structures was examined.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1350
Author(s):  
Dmitriy I. Shlimas ◽  
Artem L. Kozlovskiy ◽  
Askar Kh. Syzdykov ◽  
Daryn B. Borgekov ◽  
Maxim V. Zdorovets

The aim of this work was to study resistance to helium accumulation processes in the structure of the surface layer of lithium-containing ceramics and the subsequent destruction and embrittlement processes, depending on radiation fluence. The objects of study were Li2TiO3-type ceramics obtained by thermal sintering. The fluence dependency of changes in the structural and strength properties of ceramics was determined to be in the range from 1018 to 1022 ion/m2, which corresponded to the concentration of implanted helium from 0.01% to 0.8–1 at.%. Irradiation was carried out at a temperature of 700 °C, which made it possible to simulate the processes of radiation damage that were closest to the real conditions in the reactor core. During the studies carried out, it was found that, at irradiation fluences of 1018–1020 ion/m2, the formation of point radiation defects was equaled by the process of thermal annealing of defects, as a result of which the concentration of defects and their effect on the change in the structural and strength properties of ceramics were insignificant. An increase in the concentration of implanted helium in the structure of the surface layer to above 0.5 at.% led to the dominance of radiation damage processes over the annealing of defects and the formation of gas-filled cavities, which negatively affects the strength of ceramics.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000144-000151
Author(s):  
Siddharth Potbhare ◽  
Akin Akturk ◽  
Neil Goldsman ◽  
James M. McGarrity ◽  
Anant Agarwal

Silicon Carbide (SiC) is a promising new material for high power high temperature electronics applications. SiC Schottky diodes are already finding wide acceptance in designing high efficiency power electronic systems. We present TCAD and Verilog-A based modeling of SiC DMOSFET, and the design and analysis of a medium power DC-DC converter designed using SiC power DMOSFETs and SiC Schottky diodes. The system is designed as a 300W boost converter with a 12V input and 24V/36V outputs. The SiC power converter is compared to another designed with commercially available Silicon power devices to evaluate power dissipation in the DMOSFETs, transient response of the system and its conversion efficiency. SiC DMOSFETs are characterized at high temperature by developing temperature dependent TCAD and Verilog-A models for the device. Detailed TCAD modeling allows probing inside the device for understanding the physical processes of transport, whereas Verilog-A modeling allows us to define the complex relationship of interface traps and surface physics that is typical to SiC DMOSFETs in a compact analytical format that is suitable for inclusion in commercially available circuit simulators.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000058-000060
Author(s):  
Tomas Hjort ◽  
Adolf Schöner ◽  
Andy Zhang ◽  
Mietek Bakowski ◽  
Jang-Kwon Lim ◽  
...  

Electrical characteristics of 4H-SiC Schottky barrier diodes, based on buried grid design are presented. The diodes, rated to 1200V/10A and assembled into high temperature capable TO254 packages, have been tested and studied up to 250°C. Compared to conventional SiC Schottky diodes, Ascatron's buried grid SiC Schottky diode demonstrates several orders of magnitude reduced leakage current at high temperature operation.


2003 ◽  
Vol 433-436 ◽  
pp. 961-964 ◽  
Author(s):  
Shabbir A. Khan ◽  
Elder A. de Vasconcelos ◽  
Hiroshi Uchida ◽  
T. Katsube

Sign in / Sign up

Export Citation Format

Share Document