Brassinosteroids application induces phosphatidic acid production and modify antioxidant enzymes activity in tobacco in calcium-dependent manner

Steroids ◽  
2019 ◽  
pp. 108444 ◽  
Author(s):  
Serhiy V. Kretynin ◽  
Yaroslav S. Kolesnikov ◽  
Michael V. Derevyanchuk ◽  
Tetiana A. Kalachova ◽  
Yaroslav B. Blume ◽  
...  
2020 ◽  
Vol 21 (14) ◽  
pp. 4984
Author(s):  
Maria Klimecka ◽  
Maria Bucholc ◽  
Justyna Maszkowska ◽  
Ewa Krzywińska ◽  
Grażyna Goch ◽  
...  

Phosphatidic acid (PA) is involved in the regulation of plant growth and development, as well as responses to various environmental stimuli. Several PA targets in plant cells were identified, including two SNF1-related protein kinases 2 (SnRK2s), SnRK2.10 and SnRK2.4, which are not activated by abscisic acid (ABA). Here, we investigated the effects of PA on various elements of ABA-non-activated SnRK2 signaling. PA 16:0/18:1 was found to modulate the SnRK2 structure and the phosphorylation of some SnRK2 targets. Conversely, phosphorylation by the ABA-non-activated SnRK2s, of one of such targets, dehydrin Early Responsive to Dehydration 14 (ERD14), affects its interaction with PA and subcellular localization. Moreover, PA 16:0/18:1 modulates the activity and/or localization of negative regulators of the ABA-non-activated SnRK2s, not only of the ABA insensitive 1 (ABI1) phosphatase, which was identified earlier, but also of another protein phosphatase 2C, PP2CA. The activity of both phosphatases was inhibited by about 50% in the presence of 50 μM PA. PA 16:0/18:1 also impacts the phosphorylation and subcellular localization of SnRK2-interacting calcium sensor, known to inhibit SnRK2 activity in a calcium-dependent manner. Thus, PA was found to regulate ABA-non-activated SnRK2 signaling at several levels: the activity, phosphorylation status and/or localization of SnRK2 cellular partners.


Biologia ◽  
2008 ◽  
Vol 63 (3) ◽  
Author(s):  
Nitish Kumar ◽  
Sudheer Pamidimarri ◽  
Meenakshi Kaur ◽  
Girish Boricha ◽  
Muppala Reddy

AbstractJatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. The effect of NaCl stress on growth, ion accumulation, contents of protein, proline, and antioxidant enzymes activity in callus cultures of J. curcas was investigated. Exposure of callus to NaCl decreased growth in a concentration dependent manner. NaCl treated callus accumulated Na and declined in K, Ca and Mg contents. Na/K ratio increased steadily as a function of external NaCl treatment. NaCl induced significant differences in quality and quantity of proteins, whereas, proline accumulation remained more or less constant with treatment. NaCl stress enhanced the activity of superoxide dismutase (SOD; E.C. 1.15.1.1) and peroxidase (POX; E.C. 1.11.1.7). Further in the isoenzyme studies, four SOD isoenzymes (SOD 1, 2, 3, and 4) and two POX isoenzymes (POX 1 and 2) were detected with the treatment. NaCl strongly induced activity of SOD 4 isoenzyme in 40, 60, 80 mM and POX 2 isoenzyme in 40 and 80 mM NaCl concentrations. Increase in antioxidant enzymes activity could be a response to cellular damage induced by NaCl. This increase could not stop the deleterious effects of NaCl, but it reduced stress severity and thus allowed cell growth to occur.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1792
Author(s):  
Nikola Tatalović ◽  
Teodora Vidonja Uzelac ◽  
Zorana Oreščanin Dušić ◽  
Aleksandra Nikolić-Kokić ◽  
Mara Bresjanac ◽  
...  

Ibogaine effects are mediated by cellular receptors, ATP depletion followed by ROS production and antioxidant enzyme activity elevation in a dose and time dependent manner. Since the role of KATP channels and β-adrenoceptors in ROS cellular circuit was established here we explored their role in ibogaine pro-antioxidant effectiveness. Single dose of ibogaine (10 mg/L i.e., 28.8 μmol/L) was applied to isolated rat uterus (spontaneous and Ca2+-stimulated) and contractility and antioxidant enzymes activity were monitored during 4 h. Ibogaine increased amplitude and frequency of spontaneous active uteri immediately after addition that was prevented by propranolol (β1 and β2 adrenoceptors selective antagonists) and glibenclamide (KATP sensitive channels inhibitor; only frequency) pre-treatment. In Ca2+-stimulated uteri, ibogaine decreased both amplitude and frequency after 4 h. Pre-treatment with propranolol abolished ibogaine induced amplitude lowering, while glibenclamide had no effect. In both types of active uterus, ibogaine induced a decrease in SOD1 and an increase in CAT activity after 2 h. In Ca2+-stimulated uterus, there was also a decrease of SOD2 activity after 2 h. After 4 h, SOD1 activity returned to the baseline level, but GSH-Px activity increased. Pre-treatment with both propranolol and glibenclamide abolished observed changes of antioxidant enzymes activity suggesting that ibogaine pro-antioxidative effectiveness is β-adrenergic receptors and KATP channels mediated.


2021 ◽  
Vol 22 (4) ◽  
pp. 1596
Author(s):  
Elsa Ronzier ◽  
Claire Corratgé-Faillie ◽  
Frédéric Sanchez ◽  
Christian Brière ◽  
Tou Cheu Xiong

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2679
Author(s):  
Lihuai Yu ◽  
Hongmin Li ◽  
Zhong Peng ◽  
Yuzhu Ge ◽  
Jun Liu ◽  
...  

This study examined the impact of early weaning on antioxidant function in piglets. A total of 40 Duroc × Landrace × Large White, 21-day-old piglets (half male and half female) were divided into suckling groups (SG) and weaning groups (WG). Piglets in WG were weaned at the 21st day, while the piglets in SG continued to get breastfed. Eight piglets from each group were randomly selected and slaughtered at 24th-day (SG3, WG3) and 28th-day old (SG7, WG7). The body weight, liver index, hepatocyte morphology, antioxidant enzymes activity, gene expression of antioxidant enzymes, and Nrf2 signaling in the liver of piglets were measured. The results showed that weaning caused decreased body weight (p < 0.01), lower liver weight (p < 0.01), and decreased the liver organ index (p < 0.05) of piglets. The area and size of hepatocytes in the WG group was smaller than that in the SG group (p < 0.05). We also observed that weaning reduced the activity of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05) in the liver of piglets. Relative to the SG3 group, the gene expression of GSH-Px in liver of WG3 was significantly reduced (p < 0.05). The gene expression of Nrf2 in the SG3 group was higher than that in the WG3 group (p < 0.01). The gene expression of NQO1 in the SG7 group was higher than that in the WG7 group (p < 0.05). In conclusion, weaning resulted in lower weight, slowed liver development, and reduced antioxidant enzymes activity, thereby impairing liver antioxidant function and suppressing piglet growth.


Sign in / Sign up

Export Citation Format

Share Document