Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering

2010 ◽  
Vol 518 (22) ◽  
pp. 6241-6244 ◽  
Author(s):  
Youn J. Kim ◽  
Su B. Jin ◽  
Sung I. Kim ◽  
Yoon S. Choi ◽  
In S. Choi ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Chuen-Lin Tien ◽  
Hong-Yi Lin ◽  
Chih-Kai Chang ◽  
Chien-Jen Tang

This study presents the effect of oxygen flow rate on the optical, electrical, and mechanical properties of indium tin oxide (ITO) thin films prepared by the DC magnetron sputtering technique. The oxygen flow rate was varied from 10 to 50 sccm. The ITO thin films deposition under different oxygen flow rates exhibits different properties. We used an optical spectrometer to measure the optical transmittance and a four-point probe instrument to determine the resistivity. A home-made Twyman-Green interferometer was used to evaluate residual stress and a microscopic interferometer was used to measure the surface roughness of ITO thin films. The experimental results show that the average optical transmittance is larger than 85% in visible range; the electrical resistivity has a minimum 6.85×10-4 ohm-cm for the oxygen flow of 10 sccm. The residual stress is varied from −0.15 GPa to −0.34 GPa in the range of 10–50 sccm. The root-mean-square (rms) surface roughness is changed from 2.64 nm to 2.74 nm as the oxygen flow rate increases. The results show that the oxygen flow rate has significant influence on the electrical resistivity, residual stress, and surface roughness of the ITO thin film.


2014 ◽  
Vol 1024 ◽  
pp. 64-67 ◽  
Author(s):  
Nur Syahirah Kamarozaman ◽  
Muhamad Uzair Shamsul ◽  
Sukreen Hana Herman ◽  
Wan Fazlida Hanim Abdullah

The paper presents the memristive behavior of sputtered titania thin films on ITO substrate. Titania thin films were deposited by RF magnetron sputtering method while varying the oxygen flow rate of (O2/ (O2 + Ar) x100 = 10, 20 and 30 %) during deposition process. The effect of oxygen flow rate to the structural properties was studied including the physical thickness, and also the effect towards switching behavior. It was found that sample deposited at 20 % oxygen flow rate gave better memristive behavior compared to other samples, with larger ROFF/RON ratio of 9. The characterization of memristive behavior includes the effect of electroforming process and successive of I-V measurements are discussed.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1604
Author(s):  
Svitlana Petrovska ◽  
Ruslan Sergiienko ◽  
Bogdan Ilkiv ◽  
Takashi Nakamura ◽  
Makoto Ohtsuka

Amorphous aluminum-doped indium tin oxide (ITO) thin films with a reduced indium oxide content of 50 mass% were manufactured by co-sputtering of ITO and Al2O3 targets in a mixed argon–oxygen atmosphere onto glass substrates preheated at 523 K. The oxygen gas flow rate and heat treatment temperature effects on the electrical, optical and structural properties of the films were studied. Thin films were characterized by means of a four-point probe, ultraviolet–visible-infrared (UV–Vis-IR) spectroscopy and X-ray diffraction. Transmittance of films and crystallization temperature increased as a result of doping of the ITO thin films by aluminum. The increase in oxygen flow rate led to an increase in transmittance and hindering of the crystallization of the aluminum-doped indium saving ITO thin films. It has been found that the film sputtered under optimal conditions showed a volume resistivity of 713 µΩcm, mobility of 30.8 cm2/V·s, carrier concentration of 2.9 × 1020 cm−3 and transmittance of over 90% in the visible range.


2018 ◽  
Vol 482 ◽  
pp. 203-207 ◽  
Author(s):  
Lishuan Wang ◽  
Yugang Jiang ◽  
Chenghui Jiang ◽  
Huasong Liu ◽  
Yiqin Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document