Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge

2012 ◽  
Vol 46 (6) ◽  
pp. 1947-1957 ◽  
Author(s):  
N. De la Cruz ◽  
J. Giménez ◽  
S. Esplugas ◽  
D. Grandjean ◽  
L.F. de Alencastro ◽  
...  
2015 ◽  
Vol 5 (3) ◽  
pp. 372-390 ◽  
Author(s):  
Kareem Hatam-Nahavandi ◽  
Mehdi Mohebali ◽  
Amir-Hossein Mahvi ◽  
Hossein Keshavarz ◽  
Khadijeh Khanaliha ◽  
...  

Five municipal and domestic wastewater treatment plants, most of which had secondary treatment systems formed by activated sludge, were studied during 2013–2014 in Tehran. The study was done in order to evaluate their efficiency in terms of removal of Cryptosporidium and Giardia by (oo)cyst recovery in effluent samples using immunofluorescence with monoclonal antibodies. Results showed that mean concentrations of cysts in the influent samples always outnumbered mean concentrations of oocysts (883.3 ± 4,16.7–3,191.7 ± 1,067.2 versus 4.8 ± 6.2–83.8 ± 77.3 (oo)cysts/L), and that lower concentrations of (oo)cysts were recorded in summer, and higher levels in autumn, and that the difference was statistically significant (t-test, P <0.05) only in wastewater from slaughterhouses. Results for removal percentages of all the plants ranged from 76.7 to 92.1% for cysts and from 48.9 to 90.8% for oocysts. There was more reduction of (oo)cysts at the urban treatment plant by activated sludge-A2O-sand filtration than at plants with conventional activated sludge and activated sludge-trickling filter, however, this difference was not statistically significant for cysts and oocysts (ANOVA, P > 0.05). Infections in mice inoculated with cysts obtained from urban wastewater effluent demonstrated presence of infectious Giardia cysts. Results demonstrate limited efficiency of conventional wastewater treatment processes at physico-chemical removal of (oo)cysts.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 99-106 ◽  
Author(s):  
R. Hansen ◽  
T. Thøgersen ◽  
F. Rogalla

In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m3/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m3/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m3/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs:•either using simultaneous nitrification/denitrification in all filters with recirculation•introducing bottom aeration with full nitrification in some filters for storm treatment•and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m3 per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.


Author(s):  
Khalida Hanum

The regulations said that all domestic wastewater first should be treated before being discharged into public drainages. Therefore, IMERI building, as a research and education building located in the Faculty of Medicine, Universitas Indonesia, applies a wastewater management system using activated sludge technology combined with microorganism biofilters. This system is expected to treat the waste generated inside the building. It reprocesses become recycled water and partially discharged into city drainages based on the quality standard and maintenance applied during the operation. By collecting and evaluating primary and secondary data from system planning and routine maintenance results, we assess all performance of the WWTP system. Moreover, this system runs well and has all indicators of effluent categorizes safe. However, routine maintenance and the treatment process with chlorination and tighter monitoring should be taken seriously to keep the whole system's performance.


2021 ◽  
Author(s):  
Luka Vucinic ◽  
David O'Connell ◽  
Donata Dubber ◽  
Patrice Behan ◽  
Quentin Crowley ◽  
...  

<p>Lowland karst aquifers in Ireland are extremely complex to understand and are considered to be highly vulnerable to pollution (e.g. low-lying karst catchments exhibit a lot of surface water – groundwater interactions which makes them very susceptible to direct contamination). These aquifers are impacted by multiple contamination sources on land (in particular, rural sources from agriculture and on-site domestic wastewater effluent) which makes their protection and management challenging. Human wastewater effluent is identified as significant threat to groundwater quality in such lowland Irish karst environments, since approximately one-third of the population in Ireland is relying on decentralized wastewater treatment systems for the treatment of domestic wastewater. However, it is difficult to distinguish between human wastewater effluent and agricultural pollution impacts on karst aquifers using only traditional water quality parameters or any single environmental tracing method. Hence, the impact of microbial and chemical contaminants of human wastewater origin on groundwater quality must be assessed using a multiple-tracer approach, ideally targeting source-specific tracers. This paper presents an overview of the results obtained during the research conducted throughout the last several years at nine karst catchments in Ireland using a range of methodologies in order to determine and quantify domestic wastewater pollution impacts on karst springs. Microbial pollution was assessed using flow cytometric fingerprinting and faecal indicator bacteria, while chemical pollution impact assessment included the analysis of fluorescent whitening compounds (FWCs; well-known indicators of human contamination since their origin is mostly from laundry detergents), specific anion ratio signatures (Cl/Br), quantification and identification of microplastic particles using Fourier-transform infrared spectroscopy (FTIR), and faecal sterol and stanol profiles and ratios. A thorough analysis of the results obtained using a multiple-tracer approach has been conducted and methodologies have been evaluated in terms of applicability and sensitivity in a range of different karst catchments. The ability of these methodologies and techniques to determine and quantify human faecal pollution impacts on karst springs will be discussed. The results show a significant correlation between microplastic particle counts and detected FWCs signals at different springs, which helps to understand the contribution of household-derived contaminants to this environmental problem. Moreover, our results indicate that faecal sterols and stanols can be useful faecal source tracking method in karst aquifer systems despite the fact that concentrations of sterols and stanols of interest were usually low which makes the interpretation of results challenging.</p>


Sign in / Sign up

Export Citation Format

Share Document