scholarly journals Gene-specific quantification of nascent transcription following targeted degradation of endogenous proteins in cultured cells

2021 ◽  
Vol 2 (4) ◽  
pp. 101000
Author(s):  
Alissa D. Guarnaccia ◽  
April M. Weissmiller ◽  
William P. Tansey
2019 ◽  
Author(s):  
Justin A. Bosch ◽  
Ryan Colbeth ◽  
Jonathan Zirin ◽  
Norbert Perrimon

AbstractTargeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint homology-independent knock-in method for Drosophila melanogaster, which uses CRISPR/Cas9 and non-homologous end joining (NHEJ) to insert universal donor plasmids into the genome. This method is a simple and fast alternative to HDR for certain strategies such as C-terminal tagging and gene disruption. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker 3xP3-RFP into seven genes in the fly germ line, producing heritable loss of function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, indels always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters. Finally, we apply this fast knock-in method to uncharacterized small open reading frame (smORF) genes. Therefore, homology-independent insertion is a useful genome editing technique in Drosophila that will better enable researchers to dissect gene function.Article summaryWe report a fast and simple genomic knock-in method in Drosophila to insert large DNA elements into any target gene. Using CRISPR-Cas9 and non-homologous end joining (NHEJ), an entire donor plasmid is inserted into the genome without the need for homology arms. We demonstrate its usefulness in cultured cells to fluorescently tag endogenous proteins and in the fly germ line to generate heritable insertions that disrupt gene function and can act as expression reporters.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
Joseph M. Harb ◽  
James T. Casper ◽  
Vlcki Piaskowski

The application of tissue culture and the newer methodologies of direct cloning and colony formation of human tumor cells in soft agar hold promise as valuable modalities for a variety of diagnostic studies, which include morphological distinction between tumor types by electron microscopy (EM). We present here two cases in which cells in culture expressed distinct morphological features not apparent in the original biopsy specimen. Evaluation of the original biopsies by light and electron microscopy indicated both neoplasms to be undifferentiated sarcomas. Colonies of cells propagated in soft agar displayed features of rhabdomyoblasts in one case, and cultured cells of the second biopsy expressed features of Ewing's sarcoma.


Author(s):  
Ariaki Nagayama

Vinblastine(Vb) or vincristine, alkaloid derived from Vinca rosea is known for its antimitotic activity by regrouping of microtubules into paracrystalline form within the cells. A rapid purification method of vinblastine-induced microtubular paracrystals(PC) has provided us with a fresh and pure microtubular material demonstrating the presence of a labile ATPase associated with the PC. The present report is concerned with the fine structure of purified microtubules of mammalian cultured cells.Confluent monolayer cultures of L cells were incubated for 20hrs with 10-5 M Vb (donated from Shionogi Seiyaku & Co., Osaka, Japan).


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Author(s):  
Dean A. Handley ◽  
Cynthia M. Arbeeny ◽  
Larry D. Witte

Low density lipoproteins (LDL) are the major cholesterol carrying particles in the blood. Using cultured cells, it has been shown that LDL particles interact with specific surface receptors and are internalized via a coated pit-coated vesicle pathway for lysosomal catabolism. This (Pathway has been visualized using LDL labeled to ferritin or colloidal gold. It is now recognized that certain lysomotropic agents, such as chloroquine, inhibit lysosomal enzymes that degrade protein and cholesterol esters. By interrupting cholesterol ester hydrolysis, chloroquine treatment results in lysosomal accumulation of cholesterol esters from internalized LDL. Using LDL conjugated to colloidal gold, we have examined the ultrastructural effects of chloroquine on lipoprotein uptake by normal cultured fibroblasts.


Author(s):  
R. W. Tucker ◽  
N. S. More ◽  
S. Jayaraman

The mechanisms by which polypeptide growth factors Induce DNA synthesis in cultured cells is not understood, but morphological changes Induced by growth factors have been used as clues to Intracellular messengers responsible for growth stimulation. One such morphological change has been the transient disappearance of the primary cilium, a “9 + 0” cilium formed by the perinuclear centriole in interphase cells. Since calcium ionophore A23187 also produced both mitogenesis and ciliary changes, microtubule depolymerization might explain ciliary disappearance monitored by indirect immunofluorescence with anti-tubulin antibody. However, complete resorption and subsequent reformation of the primary cilium occurs at mitosis, and might also account for ciliary disappearance induced by growth factors. To settle this issue, we investigated the ultrastructure of the primary cilium using serial thin-section electron microscopy of quiescent BALB/c 3T3 cells before and after stimulation with serum.


Author(s):  
T. F. McCaul ◽  
R. J. Gould

Immuno-electron microscopy has allowed the selective localisation of molecules with high resolution and high specificity. Cryopreparatory methods have provided better retention of antigenicity suitable for precise immunolabelling together with optimal structural preservation of cellular components. Cryosubstitution and cryoultramicrotomy have widely been exploited for immunolabelling. Molecular Distillation Dryer (MDD), a form of freeze-drying technique, has recently been used for immunolabelling of Plasmodium falciparum stress proteins and nuclear ribonucleoprotein particles in cultured cells. In the present study, we report the comparison of all three cryotechniques in the immunolabelling of bacterial antigens of Coxiella burnetii.The highly infectious C. burnetii was prefixed in 3% glutaraldehyde (66 mM cacodylate buffer, pH 6.8 ). The cells were then pre-embedded in 2% low-temperature agarose on Durapore hydrophilic membrane prior to cryofixation using a LifeCell CF100 metal-mirror system. A 1% glutaraldehyde in 100% methanol was used as a medium for cryosubstitution in a Reichert CS Auto Cryosubstitution apparatus.


Sign in / Sign up

Export Citation Format

Share Document