Post-translational modifications talk and crosstalk to class IIa histone deacetylases

2022 ◽  
Vol 162 ◽  
pp. 53-61
Author(s):  
Sebastian Guttzeit ◽  
Johannes Backs
Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 780
Author(s):  
Kishor Pant ◽  
Estanislao Peixoto ◽  
Seth Richard ◽  
Sergio A. Gradilone

Cholangiocarcinoma (CCA) is a highly invasive and metastatic form of carcinoma with bleak prognosis due to limited therapies, frequent relapse, and chemotherapy resistance. There is an urgent need to identify the molecular regulators of CCA in order to develop novel therapeutics and advance diseases diagnosis. Many cellular proteins including histones may undergo a series of enzyme-mediated post-translational modifications including acetylation, methylation, phosphorylation, sumoylation, and crotonylation. Histone deacetylases (HDACs) play an important role in regulating epigenetic maintenance and modifications of their targets, which in turn exert critical impacts on chromatin structure, gene expression, and stability of proteins. As such, HDACs constitute a group of potential therapeutic targets for CCA. The aim of this review was to summarize the role that HDACs perform in regulating epigenetic changes, tumor development, and their potential as therapeutic targets for CCA.


Author(s):  
Jungmin Choi ◽  
Zae Young Ryoo ◽  
Dong-Hyung Cho ◽  
Hyun-Shik Lee ◽  
Hong-Yeoul Ryu

AbstractCrosstalk between post-translational modifications of histone proteins influences the regulation of chromatin structure and gene expression. Among such crosstalk pathways, the best-characterized example is H2B monoubiquitination-mediated H3K4 and H3K79 methylation, which is referred to as trans-tail regulation. Although many studies have investigated the fragmentary effects of this pathway on silencing and transcription, its ultimate contribution to transcriptional control has remained unclear. Recent advances in molecular techniques and genomics have, however, revealed that the trans-tail crosstalk is linked to a more diverse cascade of histone modifications and has various functions in cotranscriptional processes. Furthermore, H2B monoubiquitination sequentially facilitates H3K4 dimethylation and histone sumoylation, thereby providing a binding platform for recruiting Set3 complex proteins, including two histone deacetylases, to restrict cryptic transcription from gene bodies. The removal of both ubiquitin and SUMO, small ubiquitin-like modifier, modifications from histones also facilitates a change in the phosphorylation pattern of the RNA polymerase II C-terminal domain that is required for subsequent transcriptional elongation. Therefore, this review describes recent findings regarding trans-tail regulation-driven processes to elaborate on their contribution to maintaining transcriptional fidelity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rihan Hai ◽  
Liuer He ◽  
Guang Shu ◽  
Gang Yin

Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.


Author(s):  
A. Umamaheswari ◽  
A. Puratchikody ◽  
Sakthivel Balasubramaniyan

Target identification has been considered as a chief parameter in drug discovery as it fully characterizes on-target and off-target effects of drug binding. Cell signaling receptors, structural proteins, and post-translational modifications of histones by histone deacetylases are the most widespread targets that are progressively being explored. The FDA approved histone deacetylases inhibitors and the majority of HDACi in and out of clinical trials based on the activities of 11 isoforms of the enzyme in non-selective influence approach. Unfortunately, reported HDACi does not possess a high degree of structural specificity and ultimately lessens the therapeutic index with many dose limiting toxicities. This chapter illustrates how different approaches are incorporated into the novel inhibitors discovery that are truly isoform-selective and which are specifically involved in targeting only a particular isozyme. Further, it highlights the aspects relating to provide a wider therapeutic index with an improved toxicity profile of lead like epigenetic modulators.


2021 ◽  
Vol 22 (21) ◽  
pp. 11810
Author(s):  
Marta Halasa ◽  
Kamila Adamczuk ◽  
Grzegorz Adamczuk ◽  
Syeda Afshan ◽  
Andrzej Stepulak ◽  
...  

Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins’ properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.


2017 ◽  
Vol 95 (3) ◽  
pp. 368-378 ◽  
Author(s):  
Somnath Pandey ◽  
Kevin Pruitt

Ever since the first report that mutations in methyl-CpG-binding protein 2 (MeCP2) causes Rett syndrome (RTT), a severe neurological disorder in females world-wide, there has been a keen interest to gain a comprehensive understanding of this protein. While the classical model associated with MeCP2 function suggests its role in gene suppression via recruitment of co-repressor complexes and histone deacetylases to methylated CpG-sites, recent discoveries have brought to light its role in transcription activation, modulation of RNA splicing, and chromatin compaction. Various post-translational modifications (PTMs) of MeCP2 further increase its functional versatility. Involvement of MeCP2 in pathologies other than RTT, such as tumorigenesis however, remains poorly explored and understood. This review provides a survey of the literature implicating MeCP2 in breast, colon and prostate cancer.


2019 ◽  
Vol 26 (15) ◽  
pp. 2748-2785 ◽  
Author(s):  
Christophe Blanquart ◽  
Camille Linot ◽  
Pierre-François Cartron ◽  
Daniela Tomaselli ◽  
Antonello Mai ◽  
...  

Epigenetics controls the expression of genes and is responsible for cellular phenotypes. The fundamental basis of these mechanisms involves in part the post-translational modifications (PTMs) of DNA and proteins, in particular, the nuclear histones. DNA can be methylated or demethylated on cytosine. Histones are marked by several modifications including acetylation and/or methylation, and of particular importance are the covalent modifications of lysine. There exists a balance between addition and removal of these PTMs, leading to three groups of enzymes involved in these processes: the writers adding marks, the erasers removing them, and the readers able to detect these marks and participating in the recruitment of transcription factors. The stimulation or the repression in the expression of genes is thus the result of a subtle equilibrium between all the possibilities coming from the combinations of these PTMs. Indeed, these mechanisms can be deregulated and then participate in the appearance, development and maintenance of various human diseases, including cancers, neurological and metabolic disorders. Some of the key players in epigenetics are metalloenzymes, belonging mostly to the group of erasers: the zinc-dependent histone deacetylases (HDACs), the iron-dependent lysine demethylases of the Jumonji family (JMJ or KDM) and for DNA the iron-dependent ten-eleven-translocation enzymes (TET) responsible for the oxidation of methylcytosine prior to the demethylation of DNA. This review presents these metalloenzymes, their importance in human disease and their inhibitors.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Chiara V. Segré ◽  
Susanna Chiocca

Class I histone deacetylases (HDACs) are cellular enzymes expressed in many tissues and play crucial roles in differentiation, proliferation, and cancer. HDAC1 and HDAC2 in particular are highly homologous proteins that show redundant or specific roles in different cell types or in response to different stimuli and signaling pathways. The molecular details of this dual regulation are largely unknown. HDAC1 and HDAC2 are not only protein modifiers, but are in turn regulated by post-translational modifications (PTMs): phosphorylation, acetylation, ubiquitination, SUMOylation, nitrosylation, and carbonylation. Some of these PTMs occur and crosstalk specifically on HDAC1 or HDAC2, creating a rational “code” for a differential, context-related regulation. The global comprehension of this PTM code is central for dissecting the role of single HDAC1 and HDAC2 in physiology and pathology.


2020 ◽  
Author(s):  
Nikolay Toshev ◽  
Diana Cheshmedzhieva ◽  
Todor Dudev

Disruptions in post-translational modifications of chromatin structure promote uncontrollable cell growth branded as a hallmark of tumor lesions. The overexpression/hyperactivity of histone deacetylases (HDACs) is a common feature for the tumorogenesis and cancer progression. Several inhibitors of histone deacetylases (mainly hydroxamic acid derivatives) have been successfully used as drugs in fighting tumor formations. However, there is no systematic study on the factors controling the affinity and selectivity of this type of inhibitors to the host enzyme thus hampering successful rational design of more potent and selective anticancer drugs. Herein, in an attempt to illuminate the mechanism of the host – guest interactions in these systems at atomic level we systematically study the effect of various factors in the process and unravel its key determinants.  Density functional theory calculations have been employed. Our findings have the potential to be employed as guidelines in designing new HDAC inhibitors with improved anticancer properties.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0
Author(s):  
Bogdan Kolarz ◽  
Maria Majdan

Epigenetics is a field of science which describes external and environmental modifications to DNA without altering their primary sequences of nucleotides. Contrary to genetic changes, epigenetic modifications are reversible. The epigenetic changes appear as a result of the influence of external factors, such as diet or stress. Epigenetic mechanisms alter the accessibility of DNA by methylation of DNA or post-translational modifications of histones (acetylation, methylation, phosphorylation, ubiquitinqation). The extent of DNA methylation depends on the balance between DNA methyltransferases and demethylases. The main histone modifications are stimulated by K-acetyltransferases, histone deacetylases, K-metyltransferases and K-demethylases. There is proof that environmental modifications of this enzymes regulate immunological processes including autoimmunity in rheumatoid arthritis (RA). In this work we present epigenetic mechanisms involved in RA pathogenesis and a range of research presenting the possible impact of its modification in RA patients.


Sign in / Sign up

Export Citation Format

Share Document