Heat dissipation model and temperature distribution of Yb-doped double-clad fiber in the composite system

2020 ◽  
Vol 58 ◽  
pp. 102269 ◽  
Author(s):  
Yi Lv ◽  
Sheng Liu
2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Sugunarani S ◽  
Santhosh V

This work deals with the analysis of heat generation and dissipation in the disc brake of a car during braking and the following release period by using computer-aided engineering software for three different materials of the rotor disc and brake pad. The objective of this work is to analyze the temperature distribution of rotor disc during operation using COMSOL Multiphysics. The work uses the finite element analysis techniques to calculate and predict the temperature distribution on the brake disc and to identify the critical temperature of the brake rotor disc. Conduction, convection and radiation of heat transfer have been analyzed. The results obtained from the analysis indicates that different material on the same retardation of the car during braking shows different temperature distribution. A comparative study was made between grey cast iron (GCI), Aluminium Metal Matrix Composite (AMMC), Alloy steel materials are used for brake disc and the best material for making brake disc based on the rate of heat dissipation have been suggested.


Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042062
Author(s):  
Rui Qin ◽  
Man Zhang ◽  
Lijie Chen ◽  
Xiao Liu ◽  
Zhengtao Lei ◽  
...  

Abstract Due to the huge energy consumption of land-based data centers, it is necessary to establish undersea data centers as soon as possible in order to alleviate the problem of resource tension. In this paper, the uniformity of containers is assumed. Through force analysis, it is found that the stress of containers is uniformly distributed, so only the external stress should be considered. Hypothesis submarine data center in the 50 m deep seawater, calculate the container need to withstand stress is 76.417403 Mpa, common material in engineering field, then physical parameters of material to deal with the dimensional and normalization, and establishes a comprehensive evaluation model material, the Topsis method is adopted to solve, to solve the optimal evaluation of the results can be divided into: 7-4 PH Stainless Stee 0.7450 points, so choose it as IU server container material.


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


2013 ◽  
Vol 423-426 ◽  
pp. 2091-2097
Author(s):  
Shi Mei Sun ◽  
Wei Liu ◽  
Shi Yao

Fuel cells heat dissipation and cooling is a vital part of PEMFC heat management. This paper used pure water as the coolant to control the temperature distribution inside fuel cells. Established cooling channels geometrical model and simulated the temperature distribution in the steady state by using software SINDA/FLUINT. Then discusses the effects of cooling channels branch quantity, diameter and coolant velocity on fuel cell internal temperature distribution, concludes that multi-branch, large diameter pipes and low-velocity coolant make PEMFC work at best conditions.


2010 ◽  
Vol 139-141 ◽  
pp. 1433-1437
Author(s):  
Kai Lin Pan ◽  
Jiao Pin Wang ◽  
Jing Liu ◽  
Guo Tao Ren

Heat dissipation and cost are the key issues for light-emitting diode (LED) packaging. In this paper, based on the thermal resistance network model of LED packaging, three-dimensional heat dissipation model of high power multi-chip LED packaging is developed and analyzed with the application of finite element method. Temperature distributions of the current multi-chip LED packaging model are investigated systematically under the different materials of the chip substrate, die attach, and/or different structures of the heat sink and fin. The results show that the junction temperature can be decreased effectively by increasing the height of the heat sink, the width of the fin, and the thermal conductivity of the chip substrate and die attach materials. The lower cost and higher reliability for LED source can be obtained through reasonable selection of materials and structure parameters of the LED lighting system.


2021 ◽  
Vol 300 ◽  
pp. 01014
Author(s):  
Maode Li ◽  
Chuan He ◽  
Jinkui Zheng

Lithium-ion power battery has become an important part of power battery. According to the performance and characteristics of lithiumion power battery, the influence of current common charge and discharge and different cooling methods on battery performance was analysed in this paper. According to the software simulation, in the 5C charge-discharge cycle, the maximum temperature of the cells with regular arrangement is 57.97°C, the maximum temperature of the cells with staggered arrangement is 55.83°C, and the maximum temperature of phase change cooling is 47.42°C. The most important thing is that the temperature difference between the cells with phase change cooling is only 5.5°C. Some simulation results of air cooling and phase change show that phase change cooling can control the heat dissipation and temperature rise of power battery well. The research in this paper can provide better theoretical guidance for the temperature rise, heat transfer and thermal management of automotive power battery.


IJOSTHE ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 7
Author(s):  
Swarnik Mehar ◽  
Pankaj Mishra

If the heat in the heat engine is not removed properly, it causes the development of the detonation and eventually reduces the efficiency of the engine, so that the heat dissipation rate of the cylinder an important and interesting task is the option. The cylinder of the engine is one of the most important automotive components, variations of high temperature and thermal loads. To cool the cylinder, the ribs are provided on the surface of the cylinder, to increase the rate of heat transfer. By a thermal analysis of the motor cylinder and the ribs that surround it, it is useful to know the heat transfer rate and the temperature distribution inside the cylinder. We know that we can increase the heat dissipation rate by increasing the surface so it is very difficult to design such a complex motor. The main objective of this project is to analyze thermal properties such as thermal directed flow, total heat flow and temperature distribution. The cooling mechanism of the air cooled engine depends mainly on the design of the cylinder head and the block ribs. The cooling fins are used to increase the heat transfer rate of the specified surface. The life and efficiency of the engine can be improved by efficient cooling. The finite element method was used using the ANSYS software as a simulation tool for analysis.


2013 ◽  
Vol 436 ◽  
pp. 225-232 ◽  
Author(s):  
Emil Udup ◽  
Claudiu Florinel Bîșu ◽  
Miron Zapciu

The main source of heat generation in a spindle is the friction torque in the ball bearing angular contact. The thermal and structural behavior of both spindle shaft/housing and bearings is characterized by the thermal expansion and the rate of heat generation depending on the operating speed. To evaluate the temperature distribution and its effects on the axial and radial deformations a simulation procedure is required. This paper is a presentation of the numerical models performed using the (ANSYS) commercial finite element software in order to assess the thermal behavior effect on the spindle nose axial deformation. Two numerical models were designed and simulated; the first model is a classic spindle in which heat dissipation of the bearings is removed by conduction and convection with the environment and with the second model, the generated heat is removed by water cooling circuits to improve the temperature distribution and axial deformation in the housing and spindle shaft.


Sign in / Sign up

Export Citation Format

Share Document