Use of high-resolution techniques for the characterization of clotting factor VIII

1999 ◽  
Vol 852 (1) ◽  
pp. 175-188 ◽  
Author(s):  
Katharina Pock ◽  
Andreas Rizzi ◽  
Djuro Josic
2019 ◽  
Vol 4 ◽  
pp. 31-31
Author(s):  
Sheetal Dolia ◽  
Amit Pawar ◽  
Sumita Bardhan ◽  
Vimal Patel ◽  
Sachin Verma ◽  
...  

Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
M. José-Yacamán

Electron microscopy is a fundamental tool in materials characterization. In the case of nanostructured materials we are looking for features with a size in the nanometer range. Therefore often the conventional TEM techniques are not enough for characterization of nanophases. High Resolution Electron Microscopy (HREM), is a key technique in order to characterize those materials with a resolution of ~ 1.7A. High resolution studies of metallic nanostructured materials has been also reported in the literature. It is concluded that boundaries in nanophase materials are similar in structure to the regular grain boundaries. That work therefore did not confirm the early hipothesis on the field that grain boundaries in nanostructured materials have a special behavior. We will show in this paper that by a combination of HREM image processing, and image calculations, it is possible to prove that small particles and coalesced grains have a significant surface roughness, as well as large internal strain.


Author(s):  
H. Takaoka ◽  
M. Tomita ◽  
T. Hayashi

High resolution transmission electron microscopy (HRTEM) is the effective technique for characterization of detailed structure of semiconductor materials. Oxygen is one of the important impurities in semiconductors. Detailed structure of highly oxygen doped silicon has not clearly investigated yet. This report describes detailed structure of highly oxygen doped silicon observed by HRTEM. Both samples prepared by Molecular beam epitaxy (MBE) and ion implantation were observed to investigate effects of oxygen concentration and doping methods to the crystal structure.The observed oxygen doped samples were prepared by MBE method in oxygen environment on (111) substrates. Oxygen concentration was about 1021 atoms/cm3. Another sample was silicon of (100) orientation implanted with oxygen ions at an energy of 180 keV. Oxygen concentration of this sample was about 1020 atoms/cm3 Cross-sectional specimens of (011) orientation were prepared by argon ion thinning and were observed by TEM at an accelerating voltage of 400 kV.


Author(s):  
Margaret L. Sattler ◽  
Michael A. O'Keefe

Multilayered materials have been fabricated with such high perfection that individual layers having two atoms deep are possible. Characterization of the interfaces between these multilayers is achieved by high resolution electron microscopy and Figure 1a shows the cross-section of one type of multilayer. The production of such an image with atomically smooth interfaces depends upon certain factors which are not always reliable. For example, diffusion at the interface may produce complex interlayers which are important to the properties of the multilayers but which are difficult to observe. Similarly, anomalous conditions of imaging or of fabrication may occur which produce images having similar traits as the diffusion case above, e.g., imaging on a tilted/bent multilayer sample (Figure 1b) or deposition upon an unaligned substrate (Figure 1c). It is the purpose of this study to simulate the image of the perfect multilayer interface and to compare with simulated images having these anomalies.


1990 ◽  
Vol 64 (02) ◽  
pp. 232-234 ◽  
Author(s):  
P M Mannucci ◽  
A R Zanetti ◽  
M Colombo ◽  
A Chistolini ◽  
R De Biasi ◽  
...  

SummaryTo evaluate whether or not clotting factor concentrates exposed to virucidal procedures transmitted hepatitis C, sera obtained in 1984–1986 from 27 previously untreated hemophiliacs infused with a vapour-heated factor VIII concentrate were tested retrospectively for the antibody to the hepatitis C virus (anti- HCV). A 2-year-old hemophiliac, negative for anti-HCV before administration of concentrate, seroconverted at week 12 and remained anti-HCV positive thereafter. Both his parents were anti-HCV negative and he had no other household contact. The patient had also become HBsAg positive at week 8 and had at the same time a marked elevation of alanine aminotransferase. His double infection with the hepatitis B and C viruses indicates that hot vapour was not completely effective in inactivating these viruses.


1966 ◽  
Vol 15 (03/04) ◽  
pp. 349-364 ◽  
Author(s):  
A.H Özge ◽  
H.C Rowsell ◽  
H.G Downie ◽  
J.F Mustard

SummaryThe addition of trace amounts of adrenaline to whole blood in plasma in vitro increased factor VIII, factor IX and whole plasma activity in the thromboplastin generation test. This was dose dependent.Adrenaline infusions less than 22 (μg/kg body weight in normal dogs accelerated clotting, increased factor IX, factor VIII and whole plasma activity in the thromboplastin generation test and caused a fall in blood pH. In a factor IX deficient dog, there was no increase in factor IX activity. After adrenaline infusions, however, the other changes occurred and were of the same order of magnitude as in the normal. Adrenaline in doses greater than 22 μg/kg body weight did not produce as great an effect on clotting in normal or factor IX deficient dogs. The platelet count in the peripheral blood was increased following the infusion of all doses of adrenaline. These observations suggest that the accelerating effect of adrenaline on clotting is not mediated through increase in activity of a specific clotting factor.


1974 ◽  
Vol 31 (02) ◽  
pp. 328-338
Author(s):  
M. M. P Paulssen ◽  
H. L. M. A Vandenbussche-Scheffers ◽  
P. B Spaan ◽  
T de Jong ◽  
M. C Planje

SummaryFactor VIII occurs in the body in two different forms. In lymph factor VIII is bound to chylomicra. In plasma, factor VIII is bound to a protein.After delipidation of chylomicra we obtained a glycoprotein with a high polysaccharide content and a molecular weight of approx. 160,000.In plasma, factor VIII is attached to a protein which is present in normal concentrations in plasma of patients with haemophilia A and in serum (co-factor VIII).This factor is deficient in both the plasma and the serum of patients with von Willebrand’s disease.The binding between factor VIII and co-factor VIII is reversible.Some properties of these two factors are described.


1981 ◽  
Vol 45 (01) ◽  
pp. 060-064 ◽  
Author(s):  
M L Kavanagh ◽  
C N Wood ◽  
J F Davidson

SummaryNine human antibodies to factor VIII were isolated from haemophilic plasmas by affinity chromatography and gel filtration and six were subsequently subjected to immunological characterization. Three partially purified preparations were similarly characterized. Eight of the antibodies were characterized as being exclusively IgG and one preparation was found to contain IgM. Seven of the antibodies contained only a single light chain type, four being of type lambda and three of type kappa. Two antibody preparations contained both kappa and lambda light chains. In four of the preparations, only a single heavy chain sub-class could be demonstrated, three of IgG3 and one of IgG4. Of the remainder, three were a mixture of IgG3 and IgG4 sub-classes and one contained both IgG2 and IgG4. IgG sub-classification could not be achieved with the IgM-containing preparation. These results demonstrate a restricted heterogeneity of light and heavy chains in human antibodies to factor VIII.


Sign in / Sign up

Export Citation Format

Share Document