SiC-bulk growth by physical-vapor transport and its global modelling

1997 ◽  
Vol 174 (1-4) ◽  
pp. 669-674 ◽  
Author(s):  
D. Hofmann ◽  
R. Eckstein ◽  
M. Kölbl ◽  
Y. Makarov ◽  
St.G. Müller ◽  
...  
2017 ◽  
Vol 897 ◽  
pp. 3-6 ◽  
Author(s):  
Hiromasa Suo ◽  
Kazuma Eto ◽  
Tomohisa Kato ◽  
Kazutoshi Kojima ◽  
Hiroshi Osawa ◽  
...  

The growth of n-type 4H-SiC crystal was performed by physical vapor transport (PVT) growth method by using nitrogen and aluminum (N-Al) co-doping. Resistivity of N-Al co-doped 4H-SiC was as low as 5.8 mΩcm. The dislocation densities of N-Al co-doped substrates were evaluated by synchrotron radiation X-ray topography (SXRT). In addition, epitaxial growth was performed on the N-Al co-doped substrates by chemical vapor deposition (CVD). No double Shockley type stacking fault was observed in the epitaxial layer.


2007 ◽  
Vol 556-557 ◽  
pp. 25-28 ◽  
Author(s):  
Jung Gon Kim ◽  
Joon Ho An ◽  
Jung Doo Seo ◽  
Jung Kyu Kim ◽  
Myung Ok Kyun ◽  
...  

We investigated the effects of hydrogen addition to the growth process of SiC single crystal using sublimation physical vapor transport (PVT) techniques. Hydrogen was periodically added to an inert gas for the growth ambient during the SiC bulk growth. Grown 2”-SiC single crystals were proven to be the polytype of 6H-SiC and carrier concentration levels of about 1017/cm3 was determined from Hall measurements. As compared to the characteristics of SiC crystal grown without using hydrogen addition, the SiC crystal grown with periodically modulated hydrogen addition definitely exhibited lower carrier concentration and lower micropipe density as well as reduced growth rate.


2016 ◽  
Vol 858 ◽  
pp. 5-10 ◽  
Author(s):  
Adrian R. Powell ◽  
Joseph J. Sumakeris ◽  
Yuri Khlebnikov ◽  
Michael J. Paisley ◽  
R.T. Leonard ◽  
...  

The growth of large diameter silicon carbide (SiC) crystals produced by the physical vapor transport (PVT) method is outlined. Methods to increase the crystal diameters, and to turn these large diameter crystals into substrates that are ready for the epitaxial growth of SiC or other non homogeneous epitaxial layers are discussed. We review the present status of 150 mm and 200 mm substrate quality at Cree, Inc. in terms of crystallinity, dislocation density as well as the final substrate surface quality.


2001 ◽  
Vol 123 (6) ◽  
pp. 1098-1109 ◽  
Author(s):  
Q.-S. Chen ◽  
H. Zhang ◽  
V. Prasad ◽  
C. M. Balkas ◽  
N. K. Yushin

Wide-bandgap silicon carbide (SiC) substrates are needed for fabrication of electronic and optoelectronic devices and circuits that can function under high-temperature, high-power, high-frequency conditions. The bulk growth of SiC single crystal by physical vapor transport (PVT), modified Lely method involves sublimation of a SiC powder charge, mass transfer through an inert gas environment, and condensation on a seed. Temperature distribution in the growth system and growth rate profile on the crystal surface are critical to the quality and size of the grown SiC single crystal. Modeling of SiC growth is considered important for the design of efficient systems and reduction of defect density and micropipes in as-grown crystals. A comprehensive process model for SiC bulk growth has been developed that incorporates the calculations of radio frequency (RF) heating, heat and mass transfer and growth kinetics. The effects of current in the induction coil as well as that of coil position on thermal field and growth rate have been studied in detail. The growth rate has an Arrhenius-type dependence on deposition surface temperature and a linear dependence on the temperature gradient in the growth chamber.


2008 ◽  
Vol 600-603 ◽  
pp. 83-88
Author(s):  
Michel Pons ◽  
Shin Ichi Nishizawa ◽  
Peter J. Wellmann ◽  
Elisabeth Blanquet ◽  
Didier Chaussende ◽  
...  

Modeling and simulation of the SiC growth processes, Physical Vapor Transport (PVT), Chemical Vapor Deposition (CVD), are sufficiently mature to help building new process equipment or up-scaling old ones. It is possible (i) to simulate accurately temperature and deposition distributions, as well as doping (ii) to quantify the limiting phenomena, (iii) to understand the important role of different precursors in CVD and hydrogen additions in PVT. The first conclusion of this paper is the importance of the "effective" C/Si ratio during CVD epitaxy in hot-wall reactors and its capability to explain the doping concentrations. The second conclusion is the influence of the C/Si ratio in alternative bulk growth technique involving gas additions.


2014 ◽  
Author(s):  
Jeffrey J. Swab ◽  
James W. McCauley ◽  
Brady Butler ◽  
Daniel Snoha ◽  
Donovan Harris ◽  
...  

2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document