Protamine Sulfate and Vancomycin are Synergistic Against Staphylococcus Epidermidis Prosthesis Infection in Vivo

1994 ◽  
Vol 152 (1) ◽  
pp. 213-216 ◽  
Author(s):  
Joel M.H. Teichman ◽  
Victor E. Abraham ◽  
Paul C. Stein ◽  
C. Lowell Parsons
1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


2021 ◽  
Vol 12 (38) ◽  
pp. 12719-12725
Author(s):  
Maria Varghese ◽  
Rae S. Rokosh ◽  
Carolyn A. Haller ◽  
Stacy L. Chin ◽  
Jiaxuan Chen ◽  
...  

Heparin mimicking sulfated poly-amido-saccharides (sulPASs) are anticoagulants resistant to heparanases and reversed by protamine sulfate. In an in vivo murine model, sulPASs extend clotting time without the increased risk of bleeding.


2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2020 ◽  
Author(s):  
Ara Jo ◽  
Jina Won ◽  
Chan Hee Chil ◽  
Jae Young Choi ◽  
Kang-Mu Lee ◽  
...  

ABSTRACTOur recent study presented evidence that Staphylococcus epidermidis (S. epidermidis) was the most frequently encountered microbiome component in healthy human nasal mucus and that S. epidermidis could induce interferon (IFN)-dependent innate immunity to control acute viral lung infection. The serine protease inhibitor Serpine1 was identified to inhibit influenza A virus (IAV) spread by inhibiting glycoprotein cleavage, and the current study supports an additional mechanism of Serpine1 induction in the nasal mucosa, which can be regulated through S. epidermidis and IFN signaling. The exposure of in vivo mice to human S. epidermidis increased IFN-λ secretion in nasal mucosa and prevented an increase in the burden of IAV in the lung. S. epidermidis-inoculated mice exhibited the significant induction of Serpine1 in vivo in the nasal mucosa, and by targeting airway protease, S. epidermidis-induced Serpine1 inhibited the intracellular invasion of IAV to the nasal epithelium and led to restriction of IAV spreading to the lung. Furthermore, IFN-λ secretion was involved in the regulation of Serpine1 in S. epidermidis-inoculated nasal epithelial cells and in vivo nasal mucosa, and this was biologically relevant for the role of Serpine1 as an interferon-stimulated gene in the upper airway. Together, our findings reveal that human nasal commensal S. epidermidis manipulates the suppression of serine protease in in vivo nasal mucosa through Serpine1 induction and protects the nasal mucosa from IAV invasion through IFN-λ signaling.IMPORTANCEPreviously, we proved that nasal microbiome could enhance IFN-related innate immune responses to protect the respiratory tract against influenza virus infection. The present study shows a great understanding of the intimate association of S. epidermidis-regulated IFN-lambda induction and serine protease inhibitor in nasal mucosa. Our data demonstrate that S. epidermidis-regulated Serpine1 suppresses the invasion of influenza virus through suppression of airway serine protease at the level of nasal mucosa and impedes IAV spread to the respiratory tract. Thus, human nasal commensal S. epidermidis represents a therapeutic potential for treating respiratory viral infections via the change of cellular environment in respiratory tract.


1998 ◽  
Vol 42 (4) ◽  
pp. 895-898 ◽  
Author(s):  
Silvia Schwank ◽  
Zarko Rajacic ◽  
Werner Zimmerli ◽  
Jürg Blaser

ABSTRACT The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%;P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01).


2018 ◽  
Vol 76 (5) ◽  
Author(s):  
Kannappan Arunachalam ◽  
Mohankumar Ramar ◽  
Srinivasan Ramanathan ◽  
Archunan Govindaraju ◽  
Karutha Pandian Shunmugiah ◽  
...  

2012 ◽  
Vol 506 ◽  
pp. 31-34
Author(s):  
W. Janvikul ◽  
P. Ngamviriyavong ◽  
P. Uppanun ◽  
P. Tanjak ◽  
N. Sangjun

Oligochitosan salt-based antibacterial wound gels were developed and evaluated in both in vitro and in vivo models. The antibacterial activities of the oligochitosan salts and the wound gels were investigated against Staphylococcus epidermidis RP625 and Escherichia coli ATCC 11775. The minimum inhibitory concentrations (MIC) of the oligochitosan salts were found in the range of 16-256 μg/mL. The wound gels demonstrated their in vitro activities on inhibiting the growth of bacteria. The 3-D collagen gel matrix containing human dermal fibroblasts cultured with each test gel was used as an in vitro model for the examination of cell proliferation and secretion of interleukin-8 (IL-8). The gels appeared to promote the proliferation and formation of cellular process of the fibroblasts in the 3-D collagen gels and stimulate the fibroblasts to produce more IL-8. In the in vivo model, it was noted that the gels could accelerate the wound closure process. The wounds were completely closed within 14 days.


2009 ◽  
Vol 53 (10) ◽  
pp. 4064-4068 ◽  
Author(s):  
Jose L. Del Pozo ◽  
Mark S. Rouse ◽  
Gorane Euba ◽  
Cheol-In Kang ◽  
Jayawant N. Mandrekar ◽  
...  

ABSTRACT Treatment with low-amperage (200 μA) electrical current was compared to intravenous doxycycline treatment or no treatment in a rabbit model of Staphylococcus epidermidis chronic foreign body osteomyelitis to determine if the electricidal effect is active in vivo. A stainless steel implant and 104 CFU of planktonic S. epidermidis were placed into the medullary cavity of the tibia. Four weeks later, rabbits were assigned to one of three groups with treatment administered for 21 days. The groups included those receiving no treatment (n = 10), intravenous doxycycline (n = 14; 8 mg/kg of body weight three times per day), and electrical current (n = 15; 200 μA continuous delivery). Following treatment, rabbits were sacrificed and the tibias quantitatively cultured. Bacterial load was significantly reduced in the doxycycline (median, 2.55 [range, 0.50 to 6.13] log10 CFU/g of bone) and electrical-current (median, 1.09 [range, 0.50 to 2.99] log10 CFU/g of bone) groups, compared to the level for the control group (median, 4.16 [range, 3.70 to 5.66] log10 CFU/g of bone) (P < 0.0001). Moreover, treatment with electrical current was statistically significantly more efficacious (P = 0.035) than doxycycline treatment. The electricidal effect (the bactericidal activity of low-amperage electrical current against bacterial biofilms) is active in vivo in the treatment of experimental S. epidermidis chronic foreign body osteomyelitis.


2014 ◽  
Vol 83 (1) ◽  
pp. 214-226 ◽  
Author(s):  
Carolyn R. Schaeffer ◽  
Keith M. Woods ◽  
G. Matt Longo ◽  
Megan R. Kiedrowski ◽  
Alexandra E. Paharik ◽  
...  

Biofilm formation is the primary virulence factor ofStaphylococcus epidermidis.S. epidermidisbiofilms preferentially form on abiotic surfaces and may contain multiple matrix components, including proteins such as accumulation-associated protein (Aap). Following proteolytic cleavage of the A domain, which has been shown to enhance binding to host cells, B domain homotypic interactions support cell accumulation and biofilm formation. To further define the contribution of Aap to biofilm formation and infection, we constructed anaapallelic replacement mutant and anicaADBC aapdouble mutant. When subjected to fluid shear, strains deficient in Aap production produced significantly less biofilm than Aap-positive strains. To examine thein vivorelevance of our findings, we modified our previously described rat jugular catheter model and validated the importance of immunosuppression and the presence of a foreign body to the establishment of infection. The use of our allelic replacement mutants in the model revealed a significant decrease in bacterial recovery from the catheter and the blood in the absence of Aap, regardless of the production of polysaccharide intercellular adhesin (PIA), a well-characterized, robust matrix molecule. Complementation of theaapmutant with full-length Aap (containing the A domain), but not the B domain alone, increased initial attachment to microtiter plates, as did intransexpression of the A domain in adhesion-deficientStaphylococcus carnosus. These results demonstrate Aap contributes toS. epidermidisinfection, which may in part be due to A domain-mediated attachment to abiotic surfaces.


Blood ◽  
2004 ◽  
Vol 104 (4) ◽  
pp. 1217-1223 ◽  
Author(s):  
Ali S. Arbab ◽  
Gene T. Yocum ◽  
Heather Kalish ◽  
Elaine K. Jordan ◽  
Stasia A. Anderson ◽  
...  

AbstractRecently, there have been several reports using various superparamagnetic iron oxide (SPIO) nanoparticles to label mammalian cells for monitoring their temporal and spatial migration in vivo by magnetic resonance imaging (MRI). The purpose of this study was to evaluate the efficiency and toxicity of labeling cells using 2 commercially available Food and Drug Administration (FDA)-approved agents, ferumoxides, a suspension of dextran-coated SPIO used as an MRI contrast agent, and protamine sulfate, conventionally used to reverse heparin anticoagulation but also used ex vivo as a cationic transfection agent. After labeling of human mesenchymal stem cells (MSCs) and hematopoietic (CD34+) stem cells and other mammalian cells with ferumoxides-protamine sulfate complexes (FE-Pro), cellular toxicity, functional capacity, and quantitative cellular iron incorporation were determined. FE-Pro-labeled cells demonstrated no short- or long-term toxicity, changes in differentiation capacity of the stem cells, or changes in phenotype when compared with unlabeled cells. Efficient labeling with FE-Pro was observed with iron content per cell varying between 2.01 ± 0.1 pg for CD34+ cells and 10.94 ± 1.86 pg for MSCs with 100% of cells labeled. Cell labeling using these agents should facilitate the translation of this method to clinical trials for evaluation of trafficking of infused or transplanted cells by MRI. (Blood. 2004;104:1217-1223)


Sign in / Sign up

Export Citation Format

Share Document