Synthesis of reference substances for highly polar metabolites of nitroaromatic compounds

Chemosphere ◽  
1999 ◽  
Vol 38 (13) ◽  
pp. 3119-3130 ◽  
Author(s):  
Torsten C. Schmidt ◽  
Klaus Steinbach ◽  
Ulf Buetehorn ◽  
Kerstin Heck ◽  
Ute Volkwein ◽  
...  
1999 ◽  
Vol 45 (10) ◽  
pp. 840-848 ◽  
Author(s):  
R M Zablotowicz ◽  
K T Leung ◽  
T Alber ◽  
M B Cassidy ◽  
J T Trevors ◽  
...  

Sphingomonas strain UG30 mineralizes both p-nitrophenol (PNP) and pentachlorophenol (PCP). Our current studies showed that UG30 oxidatively metabolized certain other p-substituted nitrophenols, i.e., p-nitrocatechol, 2,4-dinitrophenol (2,4-DNP), and 4,6-dinitrocresol with liberation of nitrite. 2,6-DNP, o- or m-nitrophenol, picric acid, or the herbicide dinoseb were not metabolized. Studies using14C-labelled 2,4-DNP indicated that in glucose-glutamate broth cultures of UG30, greater than 90% of 103 µM 2,4-DNP was transformed to other compounds, while 8-19% of the 2,4-DNP was mineralized within 5 days. A significant portion (20-50%) of the 2,4-DNP was metabolized to highly polar metabolite(s) with one major unidentified metabolite accumulating from 5 to 25% of the initial radioactivity. The amounts of 2,4-DNP mineralized and converted to polar metabolites was affected by glutamate concentration in the medium. Nitrophenolic compounds metabolized by UG30 were also suitable substrates for the UG30 PCP-4-monooxygenase (pcpB gene expressed in Escherichia coli) which is likely central to degradation of these compounds. The wide substrate range of UG30 could render this strain useful in bioremediation of some chemically contaminated soils.Key words: bioremediation, dinitrophenol, metabolism, nitroaromatic, pentachlorophenol, Sphingomonas.


Chemosphere ◽  
1998 ◽  
Vol 37 (6) ◽  
pp. 1079-1090 ◽  
Author(s):  
Torsten C. Schmidt ◽  
Klaus Steinbach ◽  
Eberhard von Löw ◽  
Gottfiied Stork

1969 ◽  
Vol 61 (4) ◽  
pp. 641-648 ◽  
Author(s):  
Leon J. Sholiton ◽  
Emile E. Werk

ABSTRACT Rat and bovine brain have been incubated with testosterone-4-14C under standard conditions. With use of paper chromatography, the extracted metabolites were noted to fall into less-polar, iso-polar, and more polar fractions. The components of the less-polar fraction were separated by acetylation and thin-layer chromatography and the major end-products identified by recrystallization to constant specific activity or constant 3H/14C ratios. Androst-4-enedione and 5α-dihydrotestosterone were formed consistently under the conditions utilized. Trace amounts of other less-polar metabolites were noted occasionally.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica Moraes Malheiros ◽  
Banny Silva Barbosa Correia ◽  
Caroline Ceribeli ◽  
Daniel Rodrigues Cardoso ◽  
Luiz Alberto Colnago ◽  
...  

AbstractWe conducted a study to identify the fecal metabolite profile and its proximity to the ruminal metabolism of Nelore steers based on an untargeted metabolomic approach. Twenty-six Nelore were feedlot with same diet during 105 d. Feces and rumen fluid were collected before and at slaughter, respectively. The metabolomics analysis indicated 49 common polar metabolites in the rumen and feces. Acetate, propionate, and butyrate were the most abundant polar metabolites in both bio-samples. The rumen presented significantly higher concentrations of the polar compounds when compared to feces (P < 0.05); even though, fecal metabolites presented an accentuated representability of the ruminal fluid metabolites. All fatty acids present in the ruminal fluid were also observed in the feces, except for C20:2n6 and C20:4n6. The identified metabolites offer information on the main metabolic pathways (higher impact factor and P < 0.05), as synthesis and degradation of ketone bodies; the alanine, aspartate and glutamate metabolisms, the glycine, serine; and threonine metabolism and the pyruvate metabolism. The findings reported herein on the close relationship between the ruminal fluid and feces metabolic profiles may offer new metabolic information, in addition to facilitating the sampling for metabolism investigation in animal production and health routines.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1675
Author(s):  
Sengnolotha Marak ◽  
Elena Shumilina ◽  
Nutan Kaushik ◽  
Eva Falch ◽  
Alexander Dikiy

Red mature calyces of Hibiscus sabdariffa were collected from 16 different locations in Meghalaya, India. Samples were processed using shade drying (SD) and tray drying (TD). NMR spectroscopy was used to assess the metabolic composition of the calyces. In this study, 18 polar metabolites were assigned using 1D and 2D NMR spectra, and 10 of them were quantified. Proximate analysis showed that the TD method is more efficient at reducing moisture and maintaining the ash content of the Hibiscus biomass. NMR metabolomics indicates that the metabolite composition significantly differs between SD and TD samples and is more stable in TD plant processing. The differences in post-harvest drying has a greater impact on the metabolite composition of Hibiscus than the plant location.


Sign in / Sign up

Export Citation Format

Share Document