Quantitative analysis of polyvinyl alcohol on the surface of poly(d,l-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration

1999 ◽  
Vol 59 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Seung Chan Lee ◽  
Jae Taek Oh ◽  
Myoung Ho Jang ◽  
Soo Il Chung
Author(s):  
KAUSLYA ARUMUGAM ◽  
PAYAL D. BORAWAKE ◽  
JITENDRA V. SHINDE

Objective: The main intention of this research was to formulate and evaluate floating microspheres of ciprofloxacin using different polymers to prolong gastric residence time. Methods: The microspheres were formulated by the solvent evaporation method using different ratios of polymers like carbopol 940, ethylcellulose, and Hydroxy Propyl Methyl Cellulose K4M. Further, the floating microspheres were evaluated for micromeritic properties like bulk density, tapped density, angle of repose, etc., percentage yield, particle size, entrapment efficiency, floating capacity, in vitro drug release study, release kinetics, drug content, swelling index, and Fourier Transform Infrared Spectroscopy (FTIR) (Compatibility studies). Results: The ciprofloxacin microspheres showed the good flowing property. The particle size ranged from 258.1±2.21 µm to 278±2.86 µm and entrapment efficiency ranged from 63.17±0.43% to 89.90±1.32%. The IR spectrum revealed that there was no interaction between the drug and polymer. F7 formulation was found to be the best formulation. Drug release was found to be 90.70±0.89% i.e. in a controlled manner at the end of 10 h. Conclusion: The floating microspheres were prepared successfully and the results clearly stated that prepared ciprofloxacin microspheres may be safe and effective controlled drug delivery over an extended period which can increase bioavailability, patient compliance, and decrease dosing frequency.


2017 ◽  
Vol 70 (6) ◽  
pp. 735 ◽  
Author(s):  
Olivia Z. Durham ◽  
Katie L. Poetz ◽  
Devon A. Shipp

The production of degradable polyanhydride-based nanoparticles that exhibit tuneable degradation times using thiol–ene ‘click’ polymerizations is described. Linear polyanhydrides were used in the production of nanoparticles with diameters typically in the range of 250–400 nm using the emulsion–solvent evaporation method. A variety of reaction parameters, including polymer composition, surfactant species and concentration, sonication amplitude and duration, and reaction medium, were investigated to examine their impact on particle size. Also demonstrated are the potential to incorporate diverse functionality in the polymer network, the ability to load nanoparticles with a payload as exemplified by a model dye compound, and how the introduction of cross-linking into the polymer network extends degradation profiles, thereby allowing for tuneable degradation timeframes, which range from ~1 day to 14 days.


2018 ◽  
Vol 3 (1) ◽  
pp. 19
Author(s):  
Elfia Neswita ◽  
Elfi Sahlan Ben ◽  
Rahmi Nofita

<p>Telah dilakukan penelitian tentang mikroenkapsulasi atenolol dengan penyalut albumin menggunakan metode penguapan pelarut dan perbandingan atenolol dengan penyalut albumin yang digunakan adalah 1:1, 1:2 dan 1:3 berturut-turut untuk Formula I, Formula II dan Formula III. Mikrokapsul yang dihasilkan dievaluasi berdasarkan bentuk mikroskopis, distribusi ukuran partikel, penetapan kadar atenolol dalam mikrokapsul dan uji disolusi. Hasil foto mikroskopis menunjukkan mikrokapsul yang dihasilkan berbentuk sferis. Mikrokapsul mempunyai distribusi ukuran partikel 212-2000µm. Data penetapan kadar zat aktif dari masing-masing formula digunakan spektrofotometer UV dengan pelarut metanol dan  diperoleh kadar zat aktif  56,963 ± 17,589; 60,410 ± 1,005; 60,173 ± 1,016 % berturut-turut dalam formula I, Formula II, Formula III. Hasil disolusi menunjukkan bahwa semakin besar konsentrasi albumin pelepasan zat aktif dari mikrokapsul akan semakin diperlambat. Hasil penelitian menunjukkan bahwa mikrokapsul dengan perbandingan antara atenolol dengan albumin 1:1 memiliki pelepasan zat aktif yang paling baik. Kinetika pelepasan bahan aktif dari mikrokapsul mengikuti persamaan Korsmeyer Peppas dan Higuchi</p><p><em>The study about microencapsulation of atenolol with albumen as coating agent and by using solvent evaporation method had be done. The ratio atenolol and albumen were 1:1, 1:2 and 1:3 for Formula I, Formula II and Formula III respectively. The microencapsulation produced was evaluated by measuring microscopic, form particle size distribution, active compound released. The result of photo microscopic showed that microcapsules had spherical form. Microcapsules had particle size distribution between 212-2000 µm. The Spectrophotometer UV in methanol was used to measured the activate compound concentration of microcapsules and was got 56,963 ± 17,589; 60,41 ± 1,0045; 60 and 173 ± 1,0160 % for formula I, Formula II and Formula III. The result of this study showed that microcapsules with comparison between atenolol and albumen 1:1 had better release of active compound. Kinetic of atenolol released from microcapsule followed the Korsmeyer-Peppas and Higuchi.</em></p>


2013 ◽  
Vol 2 (12) ◽  
pp. 196-201 ◽  
Author(s):  
Balagani Pavan Kumar ◽  
Irisappan Sarath Chandiran ◽  
Korlakunta Narasimha Jayaveera

The objective of the present investigation was to formulate and evaluate microencapsulated Glibenclamide produced by the emulsion – solvent evaporation method. Microparticles were prepared using Eudragit RLPO by emulsion solvent evaporation method and characterized for their micromeritic properties, encapsulation efficiency, particle size, drug loading, FTIR, DSC, SEM analysis. In vitro release studies were performed in phosphate buffer (pH 7.4). Stability studies were conducted as per ICH guidelines. The resulting microparticles obtained by solvent evaporation method were free flowing in nature. The mean particle size of microparticles ranges from 134.49 – 179.72 µm and encapsulation efficiency ranges from 92.30-98.32%. The infrared spectra and differential scanning calorimetry thermographs confirmed the stable character of Glibenclamide in the drug-loaded microparticles. Scanning electron microscopy revealed that the microparticles were spherical in nature. In vitro release studies revealed that the drug release was sustained up to 12 hrs. The release kinetics of Glibenclamide from optimized formulation followed zero-order and peppas mechanism. The mechanism of drug release from the microparticles was found to be non-Fickian type. Eudragit RLPO microparticles containing Glibenclamide could be prepared successfully by using an emulsion solvent evaporation technique, which will not only sustain the release of drug but also manage complicacy of the diabetes in a better manner.DOI: http://dx.doi.org/10.3329/icpj.v2i12.17016 International Current Pharmaceutical Journal, November 2013, 2(12): 196-201


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


Author(s):  
Adel M. Aly ◽  
Ahmed S. Ali

: Glipizide (GZ) is an oral blood-glucose-lowering drug of the sulfonylurea class characterized by its poor aqueous solubility. Aiming for the production of GZ tablets with rapid onset of action followed by prolonged effect; GZ-Polyethylene glycol (PEG 4000 and 6000) solid dispersions with different ratios, (using melting and solvent evaporation method), as well as, coprecipitate containing GZ with polymethyl-methacrylate (PMMA) were prepared. Four tablet formulations were prepared containing; a) GZ alone, b) GZ: PEG6000, 1:10, c) GZ:PMMA 1:3, and, d)both GZ:PEG6000 1:10 and GZ:PMMA 1:3. The solvent evaporation method showed more enhancement of GZ solubility than the melting one, and this solubilizing effect increased with PEG increment. Generally, PEG6000 showed more enhancement of dissolution than PEG4000 especially at 1:10 drug: polymer ratio (the most enhancing formula). Also, the prepared tablet formulations showed acceptable physical properties according to USP/NF requirements. The dissolution results revealed that tablets containing PEG6000 (1:10) have the most rapid release rate, followed by the formula containing both PEG6000 and PMMA, while that including PMMA alone showed the slowest dissolution rate. Moreover, In-vivo studies for each of the above four formulations, were performed using four mice groups. The most effective formula in decreasing the blood glucose level, through the first 6 hours, was that containing GZ and PEG6000, 1:10. However, formula containing the combination of enhanced and sustained GZ was the most effective in decreasing the blood glucose level through 16 hours. Successful in-vitro in-vivo correlations could be detected between the percent released and the percent decreasing of blood glucose level after 0.5 hours.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas I

Repaglinide is a pharmaceutical drug used for the treatment of type II diabetes mellitus, it is characterized with poor solubility which limits its absorption and dissolution rate and delays onset of action. In the present study, immediate release solid dispersion of repaglinide was formulated by solvent evaporation technique. Repaglinide solid dispersions were prepared using PEG 8000, Pluronic F 127 and Gelucire 44/14 by solvent evaporation method. A 3-factor, 3-level central composite design employed to study the effect of each independent variable on dependent variables. FTIR studies revealed that no drug excipient interaction takes place. From powder X-ray diffraction (p-XRD) and by scanning electron microscopy (SEM) studies it was evident that polymorphic form of repaglinide has been converted into an amorphous form from crystalline within the solid dispersion formulation. The correlation coefficient showed that the release profile followed Higuchi model anomalous behavior and hence release mechanism was indicative of diffusion. The obtained results suggested that developed solid dispersion by solvent evaporation method might be an efficacious approach for enhancing the solubility and dissolution rate of repaglinide.


Author(s):  
Siwei Yang ◽  
Qiang Sun ◽  
Weihang Han ◽  
Yuanfang Shen ◽  
Zhigang Ni ◽  
...  

A simple and high efficient porous composites via the solvent evaporation method using g-C3N4 and NiSO4 was developed. It can super rapidly remove multiple organic dyes in water including rhodamine...


Sign in / Sign up

Export Citation Format

Share Document