Steps toward recovery of function after hemilabyrinthectomy in frogs

1998 ◽  
Vol 119 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Norbert Dieringer ◽  
Hans Straka

Removal of the labyrinthine organs on one side results in a number of severe postural and dynamic reflex deficits. Over time some of these behavioral deficits normalize again. At a chronic stage the brain of frogs exhibits a number of changes in vestibular and propriospinal circuits on the operated side that were studied in vitro. The onset of changes in the vestibular nuclear complex was delayed, became evident only after head posture had recovered by more than 50%, and was independent of the presence or absence of a degeneration of vestibular nerve afferent fibers. The time course of changes measured in the isolated spinal cord paralleled the time course of normalization of head and body posture. Results obtained after selective lesions of individual labyrinthine nerve branches show that unilateral inactivation of utricular afferent inputs is a necessary and sufficient condition to provoke postural deficits and propriospinal changes similar to those after the removal of all labyrinthine organs. The presence of multiple synaptic changes at distributed anatomic sites over different periods of time suggests that different parts of the central nervous system are involved in the normalization of different manifestations of the vestibular lesion syndrome. (Otolaryngol Head Neck Surg 1998;119:27–33.)

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


1976 ◽  
Vol 230 (4) ◽  
pp. 1101-1107 ◽  
Author(s):  
R Spector

Total thiamine (free thiamine and thiamine phosphates) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the CSF was measured in rabbits. In vivo, total thiamine transport into CSF, choroid plexus, and brain was saturable. At the normal plasma total thiamine concentration, less than 5% of total thiamine entry into CSF, choroid plexus, and brain was by simple diffusion. The relative turnovers of total thiamine in choroid plexus, whole brain, and CSF were 5, 2, and 14% per h, respectively, when measured by the penetration of 35S-labeled thiamine injected into blood. From the CSF, clearance of [35S]thiamine relative to mannitol was not saturable after the intraventricular injection of various concentrations of thiamine. However, a portion of the [35S]thiamine cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [35S]thiamine against a concentration gradient by an active saturable process that did not depend on pyrophosphorylation of the [35S]thiamine. The [35S]thiamine accumulated within the choroid plexus in vitro was readily released. These results were interpreted as showing that the entry of total thiamine into the brain and CSF from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


2019 ◽  
Vol 20 (10) ◽  
pp. 2435 ◽  
Author(s):  
Tetsuya Takahashi ◽  
Takayoshi Shimohata

Methylmercury (MeHg) causes severe damage to the central nervous system, and there is increasing evidence of the association between MeHg exposure and vascular dysfunction, hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg intoxication. These observations suggest that MeHg possibly causes blood–brain barrier (BBB) damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can impair endothelial function and increase the risks of cardiovascular disease. The most widely reported mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation. BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.


1996 ◽  
Vol 271 (1) ◽  
pp. E151-E158 ◽  
Author(s):  
H. L. Chen ◽  
D. R. Romsos

A single intracerebroventricular injection of dexamethasone (DEX) rapidly (within 30 min) suppresses brown adipose tissue thermogenesis and increases plasma insulin concentrations in adrenal-ectomized (ADX) ob/ob mice but not in ADX lean mice. Intracerebroventricular neuropeptide Y (NPY) administered intracerebroventricularly causes these same metabolic changes within 30 min in both ob/ob and lean ADX mice. We therefore hypothesized that DEX exerts these rapid-onset metabolic actions in ob/ob mice via a phenotype-specific enhancement of NPY secretion within the central nervous system. In support of this hypothesis, DEX (a type II glucocorticoid receptor agonist) administered intracerebroventricularly selectively lowered NPY concentrations in the whole hypothalamus of ADX ob/ob mice by 35% and in the arcuate nucleus region by approximately 70% within 30 min but not in the brain stem or hippocampus or in any of these regions of lean mice. DEX also functioned in vitro to enhance depolarization-dependent release of NPY from hypothalamic blocks of ADX ob/ob mice but not of ADX lean mice. Thus DEX acts in the hypothalamus of ob/ob mice in a phenotype-specific manner to evoke rapid transport of NPY from cell bodies within the arcuate nucleus to terminal regions including the dorsomedial and ventromedial hypothalamic regions for release.


2021 ◽  
Author(s):  
Bashaer Abu Khatir ◽  
Gordon Omar Davis ◽  
Mariam Sameem ◽  
Rutu Patel ◽  
Jackie Fong ◽  
...  

Tuberin is a member of a large protein complex, Tuberous Sclerosis Complex, and acts as a sensor for nutrient status regulating protein synthesis and cell cycle progression. Mutations in the Tuberin gene, TSC2, lead to the formation of tumors and developmental defects in many organ systems, including the central nervous system. Tuberin is expressed in the brain throughout development and levels of Tuberin have been found to decrease during neuronal differentiation in cell lines in vitro. Our current work investigates the levels of Tuberin at two stages of embryonic development in vivo, and we study the mRNA and protein levels during a time course using immortalized cell lines in vitro. Our results show that Tuberin levels remain stable in the olfactory bulb but decrease in the Purkinje cell layer during embryonic mouse brain development. We show here that Tuberin levels are higher when cells are cultured as neurospheres, and knockdown of Tuberin results in a reduction in the number of neurospheres. These data provide support for the hypothesis that Tuberin is an important regulator of stemness and the reduction of Tuberin levels might support functional differentiation in the central nervous system. Understanding how Tuberin expression is regulated throughout neural development is essential to fully comprehend the role of this protein in several developmental and neural pathologies.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1056
Author(s):  
Ekaterina Zinchenko ◽  
Maria Klimova ◽  
Aysel Mamedova ◽  
Ilana Agranovich ◽  
Inna Blokhina ◽  
...  

Alzheimer’s disease (AD) is an incurable pathology associated with progressive decline in memory and cognition. Phototherapy might be a new promising and alternative strategy for the effective treatment of AD, and has been actively discussed over two decades. However, the mechanisms of therapeutic photostimulation (PS) effects on subjects with AD remain poorly understood. The goal of this study was to determine the mechanisms of therapeutic PS effects in beta-amyloid (Aβ)-injected mice. The neurological severity score and the new object recognition tests demonstrate that PS 9 J/cm2 attenuates the memory and neurological deficit in mice with AD. The immunohistochemical assay revealed a decrease in the level of Aβ in the brain and an increase of Aβ in the deep cervical lymph nodes obtained from mice with AD after PS. Using the in vitro model of the blood-brain barrier (BBB), we show a PS-mediated decrease in transendothelial resistance and in the expression of tight junction proteins as well an increase in the BBB permeability to Aβ. These findings suggest that a PS-mediated BBB opening and the activation of the lymphatic clearance of Aβ from the brain might be a crucial mechanism underlying therapeutic effects of PS in mice with AD. These pioneering data open new strategies in the development of non-pharmacological methods for therapy of AD and contribute to a better understanding of the PS effects on the central nervous system.


1981 ◽  
Vol 154 (1) ◽  
pp. 35-47 ◽  
Author(s):  
CM Sorensen ◽  
CW Pierce

C57BL/10 mice were injected with semiallogeneic (B10.D2 X C57BL/10)F(1) spleen cells via the anterior facial vein within 24 h of birth to induce tolerance to B10.D2 (H-2(d)) alloantigens. Spleen cells from these mice as adults developed reduced, but significant, mixed lymphocyte and cytotoxic lymphocyte responses in vitro to H-2(d) stimulator cells and these treated mice rejected first-set B10.D2 skin grafts within a normal time-course, indicating that at best only a state of partial tolerance had been induced. Spleen cells from these mice failed to develop antibody responses to a variety of antigens in vitro when H-2(d) macrophages were in the cultures. Partially purified T cells from these neonatally treated mice suppressed primary antibody responses by normal syngeneic spleen cells in the presence of H-2(d) but not other allogeneic macrophages. These radiosensitive, haplotype-specific suppressor T (Ts) cells inhibited primary antibody responses by blocking initiation of the response, but failed to suppress secondary antibody responses and mixed lymphocyte or cytotoxic lymphocyte responses by appropriate responding spleen cells. To activate H-2(d) haplotype-specific Ts cells, stimulation with IA(d) subregion antigen(s) was necessary and sufficient; syngenicity at the I-A subregion of H-2 between the activated Ts cells and target responding spleen cell populations was also necessary and sufficient to achieve suppression. Comparable results have been obtained with spleen cells from BALB/c mice injected as neonates with (B10.D2 × C57BL/10)F(1) spleen cells where IA(b) antigens activate the haplotype-specific Ts cells. Implications for the significance of this population of haplotype-specific Ts cells in immune regulation are discussed and the properties of these Ts cells are compared and contrasted with other antigen-specific and nonspecific Ts cells whose activity is restricted by I- region products.


2002 ◽  
Vol 76 (2) ◽  
pp. 137-141 ◽  
Author(s):  
K. Hrádková ◽  
P. Horák

AbstractThe bird nasal schistosome Trichobilharzia regenti is a new agent of cercarial dermatitis. Cercariae are able to penetrate the skin of birds and mammals including man. The parasite then attacks the central nervous system. The present study has shown that schistosomula avoid penetration of blood capillaries and enter the peripheral nerves of the legs of mice and ducks as early as 1 day post-infection (p.i.) and 1.5 days p.i., respectively. These peripheral nerves are used as a route to the spinal cord. In the specific host (duck) schistosomula were found in the spinal cord from 2 days p.i. until 15 days p.i. and in the brain from 12 days p.i. until 18 days p.i. In non-specific hosts (mice; inbred strains BALB/c, hr/hr, SCID) living schistosomula were found in the spinal cord from 2 days p.i. until 21 or 24 days p.i. (depending on the mouse strain) and in the brain of two (BALB/c, SCID) of three inbred strains from 3 days p.i. until 24 days p.i. No correlation was found between the infection dose and clinical status of the experimental hosts. A high affinity of schistosomula for the peripheral nerves was also proved in vitro, suggesting a new type of migratory behaviour in schistosomatids.


2010 ◽  
Vol 391 (4) ◽  
Author(s):  
Shigetaka Yoshida

Abstract Klk8 is a tryptic serine protease with limited substrate specificity. Klk8 mRNA is expressed in many developing organs, whereas its expression is confined to limited regions, including the hippocampus, in adults. In the hippocampus, Klk8 is involved in activity-dependent synaptic changes such as long-term potentiation, which was found to be suppressed in Klk8 knockout (KO) mice. Oligodendrocytes only expressed Klk8 mRNA after injury to the central nervous system. The epidermis of the skin is one of the tissues that exhibits a high level of KLK8 expression. Klk8 might be involved in desquamation through the degradation of adhesive molecules that connect layers of the epidermis. Klk8 might thus be involved in tissue development and rearrangement.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Steven T. Denham ◽  
Surbhi Verma ◽  
Raymond C. Reynolds ◽  
Colleen L. Worne ◽  
Joshua M. Daugherty ◽  
...  

ABSTRACTCryptococcus neoformansis a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A keyC. neoformansvirulence trait is the polysaccharide capsule. Capsule shieldsC. neoformansfrom immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, theliv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, thecnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observedin vitrocorrelated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.


Sign in / Sign up

Export Citation Format

Share Document