scholarly journals Regulated Release of Cryptococcal Polysaccharide Drives Virulence and Suppresses Immune Cell Infiltration into the Central Nervous System

2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Steven T. Denham ◽  
Surbhi Verma ◽  
Raymond C. Reynolds ◽  
Colleen L. Worne ◽  
Joshua M. Daugherty ◽  
...  

ABSTRACTCryptococcus neoformansis a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A keyC. neoformansvirulence trait is the polysaccharide capsule. Capsule shieldsC. neoformansfrom immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, theliv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, thecnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observedin vitrocorrelated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.

2017 ◽  
Author(s):  
Steven T. Denham ◽  
Surbhi Verma ◽  
Raymond C. Reynolds ◽  
Colleen L. Worne ◽  
Joshua M. Daugherty ◽  
...  

AbstractCryptococcus neoformansis a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate from the initial pulmonary infection site and spread to the brain. A keyC. neoformansvirulence trait is the polysaccharide capsule. Capsule shields C. neoformans from immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at μg/mL concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant,liv7∆, released less GXM than wild-type cells when capsule is not induced. The second mutant,cnag_00658∆, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observedin vitrocorrelated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we find that exo-GXM reduces cell size and capsule thickness in capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a different role from capsule GXM during infection, altering cell size and suppressing inflammation.ImportanceCryptococcus neoformansis a leading cause of life-threatening meningoencephalitis in humans.C. neoformanscells produce an immunosuppressive polysaccharide, glucuronoxylomannan (GXM), that is the main component of a protective surface capsule. GXM is also released free into extracellular space as exo-GXM, although the distinction between cell-attached GXM and exo-GXM has been unclear. Exo-GXM influences the outcome of infection, is the basis for current diagnostic tools, and has potential therapeutic applications. This study increases our basic understanding of the fungal biology that regulates polysaccharide release, suggesting that the release of cell-attached GXM and exo-GXM are distinctly regulated. We also introduce a new concept that exo-GXM may alter cell body and capsule size, thereby influencing dissemination in the host. Finally, we provide experimental evidence to confirm clinical observations that exo-GXM influences inflammation during brain infection.


2022 ◽  
Vol 23 (1) ◽  
pp. 553
Author(s):  
Ga-Yul Min ◽  
Ji-Hye Kim ◽  
Tae-In Kim ◽  
Won-Kyung Cho ◽  
Ju-Hye Yang ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
John Michael S. Sanchez ◽  
Daniel J. Doty ◽  
Ana Beatriz DePaula-Silva ◽  
D. Garrett Brown ◽  
Rickesha Bell ◽  
...  

Abstract Background Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects 2.5 million people worldwide. Growing evidence suggests that perturbation of the gut microbiota, the dense collection of microorganisms that colonize the gastrointestinal tract, plays a functional role in MS. Indeed, specific gut-resident bacteria are altered in patients with MS compared to healthy individuals, and colonization of gnotobiotic mice with MS-associated microbiota exacerbates preclinical models of MS. However, defining the molecular mechanisms by which gut commensals can remotely affect the neuroinflammatory process remains a critical gap in the field. Methods We utilized monophasic experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice and relapse-remitting EAE in SJL/J mice to test the effects of the products from a human gut-derived commensal strain of Lactobacillus paracasei (Lb). Results We report that Lb can ameliorate preclinical murine models of MS with both prophylactic and therapeutic administrations. Lb ameliorates disease through a Toll-like receptor 2-dependent mechanism via its microbe-associated molecular patterns that can be detected in the systemic circulation, are sufficient to downregulate chemokine production, and can reduce immune cell infiltration into the central nervous system (CNS). In addition, alterations in the gut microbiota mediated by Lb-associated molecular patterns are sufficient to provide partial protection against neuroinflammatory diseases. Conclusions Local Lb modulation of the gut microbiota and the shedding of Lb-associated molecular patterns into the circulation may be important physiological signals to prevent aberrant peripheral immune cell infiltration into the CNS and have relevance to the development of new therapeutic strategies for MS.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yuanyuan Feng ◽  
Xinfang Tang ◽  
Changcheng Li ◽  
Ying Su ◽  
Xiaoyu Wang ◽  
...  

Objective. ARID1A has been discovered as a potential cancer biomarker. But its role in hepatocellular carcinoma (HCC) is subject to considerable dispute. Methods. The relationship between ARID1A and clinical factors was investigated. Clinicopathological variables related to overall survival in HCC subjects were identified using Cox and Kaplan–Meier studies. The connection between immune infiltrating cells and ARID1A expression was investigated using the tumor Genome Atlas (TCGA) dataset for gene set enrichment analysis (GSEA). Finally, a cell experiment was used to confirm it. Results. The gender and cancer topography (T) categorization of HCC were linked to increased ARID1A expression. Participants with advanced levels of ARID1A expression had a worse prognosis than someone with lower levels. ARID1A was shown to be a risk indicator of overall survival on its own. ARID1A expression is inversely proportional to immune cell infiltration. In vitro, decreasing ARID1A expression substantially slowed the cell cycle and decreased HCC cell proliferation, migration, and invasion. Conclusion. The expression of ARID1A could be used to predict the outcome of HCC. It is closely related to tumor immune cell infiltration.


2021 ◽  
Vol 13 (4) ◽  
pp. 87-97
Author(s):  
Jiaquan Yu ◽  
Amber Piazza ◽  
Sidney Sparks ◽  
Laurel E Hind ◽  
David J Niles ◽  
...  

Abstract Innate immune cell infiltration into neoplastic tissue is the first line of defense against cancer and can play a deterministic role in tumor progression. Here, we describe a series of assays, using a reconfigurable microscale assay platform (i.e. Stacks), which allows the study of immune cell infiltration in vitro with spatiotemporal manipulations. We assembled Stacks assays to investigate tumor–monocyte interactions, re-education of activated macrophages, and neutrophil infiltration. For the first time in vitro, the Stacks infiltration assays reveal that primary tumor-associated fibroblasts from specific patients differ from that associated with the benign region of the prostate in their ability to limit neutrophil infiltration as well as facilitate monocyte adhesion and anti-inflammatory monocyte polarization. These results show that fibroblasts play a regulatory role in immune cell infiltration and that Stacks has the potential to predict individual patients’ cancer-immune response.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14532-e14532
Author(s):  
Joerg Wischhusen ◽  
Markus Haake ◽  
Neha Vashist ◽  
Sabrina Genßler ◽  
Kilian Wistuba-Hamprecht ◽  
...  

e14532 Background: Growth and differentiation factor 15 (GDF-15) is a divergent member of the TGF-β superfamily with low to absent expression in healthy tissue. GDF-15 has been linked to feto-maternal immune tolerance, to prevention of excessive immune cell infiltration during tissue damage, and to anorexia. Various major tumor types secrete high levels of GDF-15. In cancer patients, elevated GDF-15 serum levels correlate with poor prognosis and reduced overall survival (OS). Methods: Impact of a proprietary GDF-15 neutralizing antibody (CTL-002) regarding T cell trafficking was analyzed by whole blood adhesion assays, a HV18-MK melanoma-bearing humanized mouse model and a GDF-15-transgenic MC38 model. Additionally, patient GDF-15 serum levels were correlated with clinical response and overall survival in oropharyngeal squamous cell carcinoma (OPSCC) and melanoma brain metastases. Results: In whole blood cell adhesion assays GDF-15 impairs adhesion of T and NK cells to activated endothelial cells. Neutralization of GDF-15 by CTL-002 rescued T cell adhesion. In HV18-MK-bearing humanized mice CTL-002 induced a strong increase in TIL numbers. Subset analysis revealed an overproportional enrichment of T cells, in particular CD8+ T cells. As immune cell exclusion is detrimental for checkpoint inhibitor (CPI) therapy, a GDF-15-transgenic MC38 model was tested for anti-PD-1 therapy efficacy. In GDF-15 overexpressing MC38 tumors response to anti PD-1 therapy was reduced by 90% compared to wtMC38 tumors. Combining aPD-1 with CTL-002 resulted in 50% of the mice rejecting their GDF-15 overexpressing tumors. Clinically, inverse correlations of GDF-15 levels with CD8+ T cell infiltration were shown for HPV+ OPSCC and for melanoma brain metastases. GDF-15 serum levels were significantly higher in HPV- than in HPV+ OPSCC patient (p < 0.0001). Low GDF-15 levels corresponded to longer OS in both HPV- and HPV+ OPSCC. In two independent melanoma patient cohorts treated with nivolumab or pembrolizumab low baseline serum GDF-15 levels were predictive for clinical response to anti-PD1 treatment and superior OS. Bivariate analysis including LDH indicates that GDF-15 independently predicts poor survival in aPD-1 treated melanoma patients. Conclusions: Taken together our in vitro and in vivo data show that elevated GDF-15 levels block T-cell infiltration into tumor tissues. Neutralizing GDF-15 with CTL-002 restores the ability of T cells to extravasate blood vessels and enter tumor tissue both in vitro and in vivo. In melanoma, patients with higher GDF-15 levels have significantly shorter survival and are less likely to respond to anti-PD1 therapy. GDF-15 may thus serve as a new predictive biomarker for anti-PD1 response, but most importantly also represents a novel target for cancer immunotherapy to improve tumor immune cell infiltration and response to anti-PD1 therapy.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Sanket Patel ◽  
Isha Dhande ◽  
Elizabeth Alana Gray ◽  
Quaisar Ali ◽  
Tahir Hussain

AbstractImmune cell infiltration plays a central role in mediating endotoxemic acute kidney injury (AKI). Recently, we have reported the anti-inflammatory and reno-protective role of angiotensin-II type-2 receptor (AT2R) activation under chronic low-grade inflammatory condition in the obese Zucker rat model. However, the role of AT2R activation in preventing lipopolysaccharide (LPS)-induced early infiltration of immune cells, inflammation and AKI is not known. Mice were treated with AT2R agonist C21 (0.3 mg/kg), with and without AT2R antagonist PD123319 (5 mg/kg) prior to or concurrently with LPS (5 mg/kg) challenge. Prior-treatment with C21, but not concurrent treatment, significantly prevented the LPS-induced renal infiltration of CD11b+ immune cells, increase in the levels of circulating and/or renal chemotactic cytokines, particularly interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) and markers of renal dysfunction (blood urea nitrogen and albuminuria), while preserving anti-inflammatory interleukin-10 (IL-10) production. Moreover, C21 treatment in the absence of LPS increased renal and circulating IL-10 levels. To investigate the role of IL-10 in a cross-talk between epithelial cells and monocytes, we performed in vitro conditioned media (CM) studies in human kidney proximal tubular epithelial (HK-2) cells and macrophages (differentiated human monocytes, THP-1 cells). These studies revealed that the conditioned-media derived from the C21-treated HK-2 cells reduced LPS-induced THP-1 tumor necrosis factor-α (TNF-α) production via IL-10 originating from HK-2 cells. Our findings suggest that prior activation of AT2R is prophylactic in preventing LPS-induced renal immune cell infiltration and dysfunction, possibly via IL-10 pathway.


2017 ◽  
Vol 114 (7) ◽  
pp. E1168-E1177 ◽  
Author(s):  
Justin E. Lengfeld ◽  
Sarah E. Lutz ◽  
Julian R. Smith ◽  
Claudiu Diaconu ◽  
Cameron Scott ◽  
...  

Disruption of the blood–brain barrier (BBB) is a defining and early feature of multiple sclerosis (MS) that directly damages the central nervous system (CNS), promotes immune cell infiltration, and influences clinical outcomes. There is an urgent need for new therapies to protect and restore BBB function, either by strengthening endothelial tight junctions or suppressing endothelial vesicular transcytosis. Although wingless integrated MMTV (Wnt)/β-catenin signaling plays an essential role in BBB formation and maintenance in healthy CNS, its role in BBB repair in neurologic diseases such as MS remains unclear. Using a Wnt/β-catenin reporter mouse and several downstream targets, we demonstrate that the Wnt/β-catenin pathway is up-regulated in CNS endothelial cells in both human MS and the mouse model experimental autoimmune encephalomyelitis (EAE). Increased Wnt/β-catenin activity in CNS blood vessels during EAE progression correlates with up-regulation of neuronal Wnt3 expression, as well as breakdown of endothelial cell junctions. Genetic inhibition of the Wnt/β-catenin pathway in CNS endothelium before disease onset exacerbates the clinical presentation of EAE, CD4+ T-cell infiltration into the CNS, and demyelination by increasing expression of vascular cell adhesion molecule-1 and the transcytosis protein Caveolin-1 and promoting endothelial transcytosis. However, Wnt signaling attenuation does not affect the progressive degradation of tight junction proteins or paracellular BBB leakage. These results suggest that reactivation of Wnt/β-catenin signaling in CNS vessels during EAE/MS partially restores functional BBB integrity and limits immune cell infiltration into the CNS.


2021 ◽  
Vol 12 ◽  
Author(s):  
XiongHui Rao ◽  
JianLong Jiang ◽  
ZhiHao Liang ◽  
JianBao Zhang ◽  
ZheHong Zhuang ◽  
...  

Background: CLDN10, an important component of the tight junctions of epithelial cells, plays a crucial role in a variety of tumors. The effect of CLDN10 expression in gastric cancer, however, has yet to be elucidated.Methods: Differential expression of CLDN10 at the mRNA and protein levels was evaluated using Oncomine, ULCAN, HPA and TIMER2.0 databases. Real-time polymerase chain reaction (RT-PCR) was utilized to further verify the expression of CLDN10 in vitro. Correlations between CLDN10 expression and clinical outcomes of gastric cancer were explored by Kaplan-Meier Plotter. Gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) were performed via LinkedOmics and GeneMANIA. The correlations between CLDN10 expression and immune cell infiltration and somatic copy number alternations (SCNA) in gastric cancer were explored by TIMER2.0 and GEPIA2.0.Results: CLDN10 expression was lower in gastric cancer compared to adjacent normal tissues, and associated with better prognosis. CLDN10 also showed significant differences at different T stages, Lauren classification, treatments and HER2 status. PPI and GSEA analysis showed that CLDN10 might be involved in signal transmission, transmembrane transport and metabolism. In some major immune cells, low expression of CLDN10 was associated with increased levels of immune cell infiltration. In addition, it was found that different SCNA status in CLDN10 might affect the level of immune cell infiltration. Furthermore, the expression of CLDN10 was significantly associated with the expression of several immune cell markers, especially B cell markers, follicular helper T cell (Tfh) markers and T cell exhaustion markers.Conclusion: Down-regulated CLDN10 was associated with better overall survival (OS) in gastric cancer. And CLDN10 may serve as a potential prognostic biomarker and correlate to immune infiltration levels in gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document