Ethanol inhibits carbachol-induced calcium responses in glial cells in a concentration- and time-dependent manner

1998 ◽  
Vol 95 ◽  
pp. 65
Author(s):  
M.C. Catlin ◽  
L.G. Costa
2010 ◽  
Vol 134 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Kosara Smiljanic ◽  
Irena Lavrnja ◽  
Aleksandra Mladenovic Djordjevic ◽  
Sabera Ruzdijic ◽  
Mirjana Stojiljkovic ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 452-452 ◽  
Author(s):  
Jinny Paul ◽  
Jianxun Lei ◽  
Ritu Jha ◽  
Julia Nguyen ◽  
Donald A Simone ◽  
...  

Abstract Sickle cell disease (SCD) is associated with pain, which remains a major challenge to treat. Earlier, we showed that peripheral mechanisms including mast cell activation in the skin contribute to pain in sickle mice (Vincent et al., Blood 2013). Mast cell activation in sickle mice was accompanied by a significant increase in toll-like receptor 4 (TLR4) as compared to mast cells from control mice. Since peripheral as well as central mechanisms are involved in nociception, we examined the central mechanisms underlying pain in SCD. TLR4 signaling is involved in inflammatory and neuropathic pain (Wang et al., FASEB 2013 and Hutchinson et al., Eur J Neurosci 2008). Microglial cells, the “macrophages” of the central nervous system in the spinal cord are critically involved in the development and maintenance of pain. Binding of an endogenous ligand to TLR4 is an important step in the regulation of microglial activity in pain facilitation. We hypothesized that heme, released during hemolysis in SCD, is a ligand for TLR4 expressed on spinal microglia. Methods. We isolated microglial cells from the spinal cords of HbSS-BERK (sickle) and HbAA-BERK (control) mice. To assess mitochondrial activity, we analyzed reactive oxygen species (ROS) and ATP, since increased ROS and decreased ATP are suggestive of mitochondrial dysfunction, which in turn is influenced by endoplasmic reticulum (ER) stress. ROS in the microglial cells was determined by utilizing the cell permeable reagent 2’,7’-dichlorofluorescein, which is oxidized by ROS to form a fluorescent compound, with the max excitation and emission spectra of 495 nm and 529 nm, respectively. ATP production was measured by a luminescence based assay from PerkinElmer (ATPlite). Results. Stimulation of microglia from control and sickle mice with hemin in vitro led to a several-fold increase in TLR4 gene transcripts in a time-dependent manner. Additionally, hemin induced the production of proinflammatory cytokines, TNF-α and IL-6, and ROS compared to vehicle-treated microglial cells from both sickle and control mice (p<0.01 for both). TAK-242 and LPS-RS, inhibitors of TLR4, ameliorated hemin-induced ROS production in microglial cells (p<0.01 and p<0.001 vs. hemin, respectively). Microglial cells treated with hemin showed a significant reduction in ATP content (p<0.01 vs. vehicle). Furthermore, hemin treatment increased expression of the ER stress protein, XBP1, in sickle and control microglial cells (40% increase in the expression of XBP1 compared to unstimulated), which was attenuated by the TLR4 inhibitor, LPS-RS (30% decrease compared to hemin stimulated), suggesting that hemin-induced TLR4 activation leads to ER stress. The ER stress inhibitor, salubrinal, attenuated hemin-induced ROS production from microglial cells (p<0.01 vs. vehicle). Moreover, hemin significantly stimulated the phosphorylation of p38MAPK, Stat3, Akt and MAPK/ERK in a time-dependent manner in both control and sickle glial cells. Whole spinal cord lysates from sickle mice showed significantly higher density of protein bands for phosphorylated p38MAPK, Stat3, Akt and MAPK/ERK, as compared to those from control mice, indicative of ongoing heme-induced glial activation and nociceptive signaling in spinal cords of sickle mice. Complementary to nociceptive signaling, ROS was significantly higher in sickle as compared to control mice spinal cords (p<0.05). Since hemin activates glial cells from control mice, it is a likely cause of microglial activation in sickle mice and because it further augments activation of glial cells from sickle mice, it may lead to a sustained activation of spinal glia. Therefore, hemin induces ER stress via activation of TLR4 resulting in the generation of ROS, oxidative stress and inflammation leading to the activation of microglial cells, which in turn release mediators that excite and sensitize spinal nociceptive neurons, thus maintaining chronic pain. These data suggest that inhibitors of TLR4 and ER stress may be of therapeutic benefit in treating pain in SCD. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4293
Author(s):  
Zhen-Wang Li ◽  
Chun-Yan Zhong ◽  
Xiao-Ran Wang ◽  
Shi-Nian Li ◽  
Chun-Yuan Pan ◽  
...  

Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23–46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.


2021 ◽  
Vol 9 (2) ◽  
pp. 255
Author(s):  
Angelo Iacobino ◽  
Giovanni Piccaro ◽  
Manuela Pardini ◽  
Lanfranco Fattorini ◽  
Federico Giannoni

Previous studies on Escherichia coli demonstrated that sub-minimum inhibitory concentration (MIC) of fluoroquinolones induced the SOS response, increasing drug tolerance. We characterized the transcriptional response to moxifloxacin in Mycobacterium tuberculosis. Reference strain H37Rv was treated with moxifloxacin and gene expression studied by qRT-PCR. Five SOS regulon genes, recA, lexA, dnaE2, Rv3074 and Rv3776, were induced in a dose- and time-dependent manner. A range of moxifloxacin concentrations induced recA, with a peak observed at 2 × MIC (0.25 μg/mL) after 16 h. Another seven SOS responses and three DNA repair genes were significantly induced by moxifloxacin. Induction of recA by moxifloxacin was higher in log-phase than in early- and stationary-phase cells, and absent in dormant bacilli. Furthermore, in an H37Rv fluoroquinolone-resistant mutant carrying the D94G mutation in the gyrA gene, the SOS response was induced at drug concentrations higher than the mutant MIC value. The 2 × MIC of moxifloxacin determined no significant changes in gene expression in a panel of 32 genes, except for up-regulation of the relK toxin and of Rv3290c and Rv2517c, two persistence-related genes. Overall, our data show that activation of the SOS response by moxifloxacin, a likely link to increased mutation rate and persister formation, is time, dose, physiological state and, possibly, MIC dependent.


2021 ◽  
Vol 187 ◽  
pp. 108493
Author(s):  
Gerardo Ramirez-Mejia ◽  
Elvi Gil-Lievana ◽  
Oscar Urrego-Morales ◽  
Ernesto Soto-Reyes ◽  
Federico Bermúdez-Rattoni

Author(s):  
Hong Wang ◽  
Wenjuan Zhang ◽  
Jinren Liu ◽  
Junhong Gao ◽  
Le Fang ◽  
...  

Abstract Blast lung injury (BLI) is the major cause of death in explosion-derived shock waves; however, the mechanisms of BLI are not well understood. To identify the time-dependent manner of BLI, a model of lung injury of rats induced by shock waves was established by a fuel air explosive. The model was evaluated by hematoxylin and eosin staining and pathological score. The inflammation and oxidative stress of lung injury were also investigated. The pathological scores of rats’ lung injury at 2 h, 24 h, 3 days, and 7 days post-blast were 9.75±2.96, 13.00±1.85, 8.50±1.51, and 4.00±1.41, respectively, which were significantly increased compared with those in the control group (1.13±0.64; P&lt;0.05). The respiratory frequency and pause were increased significantly, while minute expiratory volume, inspiratory time, and inspiratory peak flow rate were decreased in a time-dependent manner at 2 and 24 h post-blast compared with those in the control group. In addition, the expressions of inflammatory factors such as interleukin (IL)-6, IL-8, FosB, and NF-κB were increased significantly at 2 h and peaked at 24 h, which gradually decreased after 3 days and returned to normal in 2 weeks. The levels of total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase were significantly decreased 24 h after the shock wave blast. Conversely, the malondialdehyde level reached the peak at 24 h. These results indicated that inflammatory and oxidative stress induced by shock waves changed significantly in a time-dependent manner, which may be the important factors and novel therapeutic targets for the treatment of BLI.


2020 ◽  
Vol 15 (1) ◽  
pp. 619-628
Author(s):  
Chen Yuan ◽  
Ya Mo ◽  
Jie Yang ◽  
Mei Zhang ◽  
Xuejun Xie

AbstractAdvanced glycosylation end products (AGEs) are harmful factors that can damage the inner blood–retinal barrier (iBRB). Rat retinal microvascular endothelial cells (RMECs) were isolated and cultured, and identified by anti-CD31 and von Willebrand factor polyclonal antibodies. Similarly, rat retinal Müller glial cells (RMGCs) were identified by H&E staining and with antibodies of glial fibrillary acidic protein and glutamine synthetase. The transepithelial electrical resistance (TEER) value was measured with a Millicell electrical resistance system to observe the leakage of the barrier. Transwell cell plates for co-culturing RMECs with RMGCs were used to construct an iBRB model, which was then tested with the addition of AGEs at final concentrations of 50 and 100 mg/L for 24, 48, and 72 h. AGEs in the in vitro iBRB model constructed by RMEC and RMGC co-culture led to the imbalance of the vascular endothelial growth factor (VEGF) and pigment epithelial derivative factor (PEDF), and the permeability of the RMEC layer increased because the TEER decreased in a dose- and time-dependent manner. AGEs increased VEGF but lowered PEDF in a dose- and time-dependent manner. The intervention with AGEs led to the change of the transendothelial resistance of the RMEC layer likely caused by the increased ratio of VEGF/PEDF.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1652
Author(s):  
Chinmaya Panda ◽  
Clara Voelz ◽  
Pardes Habib ◽  
Christian Mevissen ◽  
Thomas Pufe ◽  
...  

Intra-neuronal misfolding of monomeric tau protein to toxic β-sheet rich neurofibrillary tangles is a hallmark of Alzheimer’s disease (AD). Tau pathology correlates not only with progressive dementia but also with microglia-mediated inflammation in AD. Amyloid-beta (Aβ), another pathogenic peptide involved in AD, has been shown to activate NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3), triggering the secretion of proinflammatory interleukin-1β (IL1β) and interleukin-18 (IL18). However, the effect of tau protein on microglia concerning inflammasome activation, microglial polarization, and autophagy is poorly understood. In this study, human microglial cells (HMC3) were stimulated with the unaggregated and aggregated forms of the tau-derived PHF6 peptide (VQIVYK). Modulation of NLRP3 inflammasome was examined by qRT-PCR, immunocytochemistry, and Western blot. We demonstrate that fibrillar aggregates of VQIVYK upregulated the NLRP3 expression at both mRNA and protein levels in a dose- and time-dependent manner, leading to increased expression of IL1β and IL18 in HMC3 cells. Aggregated PHF6-peptide also activated other related inflammation and microglial polarization markers. Furthermore, we also report a time-dependent effect of the aggregated PHF6 on BECN1 (Beclin-1) expression and autophagy. Overall, the PHF6 model system-based study may help to better understand the complex interconnections between Alzheimer’s PHF6 peptide aggregation and microglial inflammation, polarization, and autophagy.


Sign in / Sign up

Export Citation Format

Share Document