scholarly journals Aggregated Tau-PHF6 (VQIVYK) Potentiates NLRP3 Inflammasome Expression and Autophagy in Human Microglial Cells

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1652
Author(s):  
Chinmaya Panda ◽  
Clara Voelz ◽  
Pardes Habib ◽  
Christian Mevissen ◽  
Thomas Pufe ◽  
...  

Intra-neuronal misfolding of monomeric tau protein to toxic β-sheet rich neurofibrillary tangles is a hallmark of Alzheimer’s disease (AD). Tau pathology correlates not only with progressive dementia but also with microglia-mediated inflammation in AD. Amyloid-beta (Aβ), another pathogenic peptide involved in AD, has been shown to activate NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3), triggering the secretion of proinflammatory interleukin-1β (IL1β) and interleukin-18 (IL18). However, the effect of tau protein on microglia concerning inflammasome activation, microglial polarization, and autophagy is poorly understood. In this study, human microglial cells (HMC3) were stimulated with the unaggregated and aggregated forms of the tau-derived PHF6 peptide (VQIVYK). Modulation of NLRP3 inflammasome was examined by qRT-PCR, immunocytochemistry, and Western blot. We demonstrate that fibrillar aggregates of VQIVYK upregulated the NLRP3 expression at both mRNA and protein levels in a dose- and time-dependent manner, leading to increased expression of IL1β and IL18 in HMC3 cells. Aggregated PHF6-peptide also activated other related inflammation and microglial polarization markers. Furthermore, we also report a time-dependent effect of the aggregated PHF6 on BECN1 (Beclin-1) expression and autophagy. Overall, the PHF6 model system-based study may help to better understand the complex interconnections between Alzheimer’s PHF6 peptide aggregation and microglial inflammation, polarization, and autophagy.

Pharmacology ◽  
2018 ◽  
Vol 101 (5-6) ◽  
pp. 236-245 ◽  
Author(s):  
Shiro Nakamura ◽  
Toshio Watanabe ◽  
Tetsuya Tanigawa ◽  
Sunao Shimada ◽  
Yuji Nadatani ◽  
...  

Activation of the NOD-Like Receptor Family, Pyrin Domain-Containing 3 (NLRP3) inflammasome, which consists of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1, triggers pro-caspase-1 cleavage promoting the processing of pro-interleukin (IL)-1β into mature IL-1β, which is critical for the development of non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy. We investigated the effects of isoliquiritigenin, a flavonoid derived from the roots of Glycyrrhiza species, on NSAID-induced small intestinal damage and the inflammasome activation. To induce enteropathy, mice were administered indomethacin by gavage with or without isoliquiritigenin pretreatment. Some mice received an intraperitoneal injection of recombinant murine IL-1β in addition to isoliquiritigenin and indomethacin. Indomethacin induced small intestinal damage and increased protein levels of cleaved caspase-1 and mature IL-1β in the small intestine. Treatment with 7.5 and 75 mg/kg isoliquiritigenin inhibited indomethacin-induced small intestinal damage by 40 and 56%, respectively. Isoliquiritigenin also inhibited the indomethacin-induced increase in cleaved caspase-1 and mature IL-1β protein levels, whereas it did not affect the mRNA expression of NLRP3, ASC, caspase-1, and IL-1β. Protection against intestinal damage in isoliquiritigenin-treated mice was completely abolished with exogenous IL-1β. NLRP3–/– and caspase-1–/– mice exhibited resistance to intestinal damage, and isoliquiritigenin treatment failed to inhibit the damage in NLRP3–/– and caspase-1–/– mice. Isoliquiritigenin prevents NSAID-induced small intestinal damage by inhibiting NLRP3 inflammasome activation.


Author(s):  
Ole Heinisch ◽  
Thomas Zeyen ◽  
Tobias Goldmann ◽  
Marco Prinz ◽  
Michael Huber ◽  
...  

AbstractInflammasomes are known to contribute to brain damage after acute ischemic stroke (AIS). TAK1 is predominantly expressed in microglial cells and can regulate the NLRP3 inflammasome, but its impact on other inflammasomes including NLRC4 and AIM2 after AIS remains elusive. EPO has been shown to reduce NLRP3 protein levels in different disease models. Whether EPO-mediated neuroprotection after AIS is conveyed via an EPO/TAK1/inflammasome axis in microglia remains to be clarified. Subjecting mice deficient for TAK1 in microglia/macrophages (Mi/MΦ) to AIS revealed a significant reduction in infarct sizes and neurological impairments compared to the corresponding controls. Post-ischemic increased activation of TAK1, NLRP3, NLRC4, and AIM2 inflammasomes including their associated downstream cascades were markedly reduced upon deletion of Mi/MΦ TAK1. EPO administration improved clinical outcomes and dampened stroke-induced activation of TAK1 and inflammasome cascades, which was not evident after the deletion of Mi/MΦ TAK1. Pharmacological inhibition of NLRP3 in microglial BV-2 cells did not influence post-OGD IL-1β levels, but increased NLRC4 and AIM2 protein levels, suggesting compensatory activities among inflammasomes. Overall, we provide evidence that Mi/MΦ TAK1 regulates the expression and activation of the NLRP3, NLRC4, AIM2 inflammasomes. Furthermore, EPO mitigated stroke-induced activation of TAK1 and inflammasomes, indicating that EPO conveyed neuroprotection might be mediated via an EPO/TAK1/inflammasome axis. Graphical Abstract


2021 ◽  
pp. 096032712110529
Author(s):  
Qunxian Li ◽  
Jing Wu ◽  
Lixian Huang ◽  
Bo Zhao ◽  
Qingbin Li

Ischemic stroke is a leading cause of death and long-term disability worldwide. The aim of this study is to explore the potential function of ephedrine in ischemic stroke and the underlying molecular mechanism. A middle cerebral artery occlusion (MCAO) rat model was established. The potential effects of ephedrine on MCAO rats and LPS-stimulated BV2 microglial cells were evaluated. Ephedrine reduced the infarct volume, cell apoptosis, brain water content, neurological score, and proinflammatory cytokines (TNF-α and IL-1β) production in MCAO rats. Ephedrine treatment also suppressed TNF-α and IL-1β production and NOD-like receptor pyrin domain 3 (NLRP3) inflammasome activation in BV2 microglial cells. The expression of NLRP3, caspase-1, and IL-1β was suppressed by ephedrine. Moreover, ephedrine treatment increased the phosphorylation of Akt and GSK3β and nuclear NRF2 levels in LPS-treated BV2 microglial cells. Meanwhile, LY294002 attenuated the inhibitory effects of ephedrine on NLRP3 inflammasome activation and TNF-α and IL-1β production. In addition, the level of pAkt was increased, while NLRP3, caspase-1, and IL-1β were decreased by ephedrine treatment in MCAO rats. In conclusion, ephedrine ameliorated cerebral ischemia injury via inhibiting NLRP3 inflammasome activation through the Akt/GSK3β/NRF2 pathway. Our results revealed a potential role of ephedrine in ischemic stroke treatment.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


2020 ◽  
pp. 607-619
Author(s):  
Ya’nan Qi ◽  
◽  
Zhibao Guo ◽  
Huijun Hu ◽  
Xiang’en Meng ◽  
...  

Neuroinflammation plays an important role in brain damage after acute carbon monoxide poisoning (ACOP). The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing (NLRP) 3 inflammasome triggers the activation of inflammatory caspases and maturation of interleukin (IL)-1β and -18, and has been linked to various human autoinflammatory and autoimmune diseases. In this study we investigated the effects of hyperbaric oxygen (HBO2) on NLRP3 inflammasome activation after ACOP. Mice were randomly divided into four groups: sham group (exposure to normobaric air – i.e., 21% O2 at 1 atmosphere absolute); HBO2-only group; CO + normobaric air group; and CO + HBO2 group. Cognitive function was evaluated with the Morris water maze; myelin injury was assessed by Fluoro-Myelin GreenTM fluorescent myelin staining and myelin basic protein (MBP) immunostaining; and mRNA and protein levels of NLRP3 inflammasome complex proteins were measured by quantitative real-time PCR and Western blot, respectively. Additionally, serum and brain levels of IL-1β and -18 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were determined by enzyme-linked immunosorbent assay. It was found that HBO2 improved learning and memory, and alleviated myelin injury in mice subjected to acute CO exposure. Furthermore, HBO2 decreased NLRP3, absent in melanoma 2 (AIM2), caspase-1, and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain mRNA and protein levels, and reduced brain and serum concentrations of IL-1β and -18 and NADPH oxidase. These results indicate that HBO2 suppresses the inflammatory response after ACOP by blocking NLRP3 inflammasome activation, thereby alleviating cognitive deficits.


2017 ◽  
Vol 23 (8) ◽  
pp. 697-708 ◽  
Author(s):  
Diana M Gómez ◽  
Silvio Urcuqui-Inchima ◽  
Juan C Hernandez

In recent years, the potential use of silica nanoparticles (SiNPs) among different biomedical fields has grown. A deep understanding of the physicochemical properties of nanoparticles (NPs) and their regulation of specific biological responses is crucial for the successful application of NPs. Exposure to NP physicochemical properties (size, shape, porosity, etc.) could result in deleterious effects on cellular functions, including a pro-inflammatory response mediated via activation of the NLRP3 inflammasome. The aim of this study was to evaluate the potential in vitro immunomodulatory effect of 12-nm and 200-nm SiNPs on the expression of pro-inflammatory cytokines and NLRP3 inflammasome components in human primary neutrophils and PBMCs. This study demonstrates that regardless of the size of the nanoparticles, SiNPs induce the production of pro-inflammatory cytokines in a dose-dependent manner. Induced IL-1β production after exposure to SiNPs suggests the involvement of NLRP3 inflammasome components participation in this process. In conclusion, SiNPs induce the production of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, our data suggest that the production and release of IL-1β possibly occurs through the formation of the NLRP3 inflammasome.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2631 ◽  
Author(s):  
Zeyuan Wang ◽  
Jianfeng Cai ◽  
Qing Fu ◽  
Lingping Cheng ◽  
Lehao Wu ◽  
...  

Fifteen unreported compounds in Anemarrhena asphodeloides, iriflophene (3), hostaplantagineoside C (7), tuberoside G (8), spicatoside B (9), platycodin D (14), platycoside A (15), platycodin D2 (16), polygalacin D2 (17), platycodin D3 (18), isovitexin (20), vitexin (21), 3,4-dihydroxyallylbenzene-3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside (22), iryptophan (24), adenosine (25), α-d-Glucose monoallyl ether (26), together with eleven known compounds (1, 2, 4–6, 10–13, 19 and 23), were isolated from the rhizomes of Anemarrhena asphodeloides. The chemical structures of these compounds were characterized using HRMS and NMR. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit LPS-induced NO production in N9 microglial cells. Timosaponin BIII (TBIII) and trans-hinokiresinol (t-HL) exhibited significant inhibitory effects on the NO production in a dose-dependent manner with IC50 values of 11.91 and 39.08 μM, respectively. Immunoblotting demonstrated that TBIII and t-HL suppressed NO production by inhibiting the expressions of iNOS in LPS-stimulated N9 microglial cells. Further results revealed that pretreatment of N9 microglial cells with TBIII and t-HL attenuated the LPS-induced expression tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) at mRNAs and protein levels. Moreover, the activation of nuclear factor-κB (NF-κB) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were inhibited by TBIII and t-HL, respectively. Our findings indicate that the therapeutic implication of TBIII and t-HL for neurogenerative disease associated with neuroinflammation.


2021 ◽  
Author(s):  
Giuseppe Bombaci ◽  
Mayuresh A Sarangdhar ◽  
Nicola Andina ◽  
Aubry Tardivel ◽  
Eric Chi-Wang Yu ◽  
...  

Inflammasomes are cytosolic innate immune sensors that, upon activation, induce caspase-1 mediated inflammation. Although inflammation is protective, uncontrolled excessive inflammation can cause inflammatory diseases and is also detrimental in COVID-19 infection. However, the underlying mechanisms that control inflammasome activation are incompletely understood. Here we report that the leucine rich repeat (LRR) protein Ribonuclease inhibitor (RNH1), which shares homology with LRRs of NOD-like receptor family pyrin domain (PYD)-containing (NLRP) proteins, attenuates inflammasome activation. Mechanistically, RNH1 decreased pro-IL1b expression and induced proteasome-mediated caspase-1 degradation. Corroborating this, mouse models of monosodium urate (MSU)-induced peritonitis and LPS-induced endotoxemia, which are dependent on caspase-1, respectively showed increased neutrophil infiltration and lethality in Rnh1-/- mice compared to WT mice. Further, RNH1 protein levels were negatively correlated with inflammation and disease severity in hospitalized COVID-19 patients. We propose that RNH1 is a new inflammasome regulator with relevance to COVID-19 severity.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Wang ◽  
Bingfeng Lin ◽  
Zhifeng Li ◽  
Jie Su ◽  
Yulin Feng

Gouty arthritis is characterized by the deposition of monosodium urate (MSU) within synovial joints and tissues due to increased urate concentrations. Here, we elucidated the role of the natural compound cichoric acid (CA) on the MSU crystal-stimulated inflammatory response. The THP-1-derived macrophages (THP-Ms) were pretreated with CA and then stimulated with MSU suspensions. The protein levels of p65 and IκBα, the activation of the NF-κB signaling pathway by measuring the expression of its downstream inflammatory cytokines, and the activity of NLRP3 inflammasome were measured by western blotting and ELISA. CA treatment markedly inhibited the degradation of IκBα and the activation of NF-κB signaling pathway and reduced the levels of its downstream inflammatory genes such as IL-1β, TNF-α, COX-2, and PGE2 in the MSU-stimulated THP-M cells. Therefore, we infer that CA effectively alleviated MSU-induced inflammation by suppressing the degradation of IκBα, thereby reducing the activation of the NF-κB signaling pathway and the NLRP3 inflammasome. These results suggest that CA could be a novel therapeutic strategy in averting acute episodes of gout.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 825
Author(s):  
Umar Farooq ◽  
Taous Khan ◽  
Shahid Ali Shah ◽  
Md. Sanower Hossain ◽  
Yousaf Ali ◽  
...  

Neurodegenerative diseases (NDs) extend the global health burden. Consumption of alcohol as well as maternal exposure to ethanol can damage several neuronal functions and cause cognition and behavioral abnormalities. Ethanol induces oxidative stress that is linked to the development of NDs. Treatment options for NDs are yet scarce, and natural product-based treatments could facilitate ND management since plants possess plenty of bioactive metabolites, including flavonoids, which typically demonstrate antioxidant and anti-inflammatory properties. Hypericum oblongifolium is an important traditional medicinal plant used for hepatitis, gastric ulcer, external wounds, and other gastrointestinal disorders. However, it also possesses multiple bioactive compounds and antioxidant properties, but the evaluation of isolated pure compounds for neuroprotective efficacy has not been done yet. Therefore, in the current study, we aim to isolate and characterize the bioactive flavonoid folecitin and evaluate its neuroprotective activity against ethanol-induced oxidative-stress-mediated neurodegeneration in the hippocampus of postnatal day 7 (PND-7) rat pups. A single dose of ethanol (5 g/kg body weight) was intraperitoneally administered after the birth of rat pups on PND-7. This caused oxidative stress accompanied by the activation of phosphorylated-c-Jun N-terminal kinase (p-JNK), nod-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cysteine-aspartic acid protease-1 (caspase-1) proteins to form a complex called the NLRP3-inflammasome, which converts pro-interleukin 1 beta (IL-1B) to activate IL-1B and induce widespread neuroinflammation and neurodegeneration. In contrast, co-administration of folecitin (30 mg/kg body weight) reduced ethanol-induced oxidative stress, inhibited p-JNK, and deactivated the NLRP3-inflammasome complex. Furthermore, folecitin administration reduced neuroinflammatory and neurodegenerative protein markers, including decreased caspase-3, BCL-2-associated X protein (BAX), B cell CLL/lymphoma 2 (BCL-2), and poly (ADP-ribose) polymerase-1 (PARP-1) expression in the immature rat brain. These findings conclude that folecitin is a flavone compound, and it might be a novel, natural and safe agent to curb oxidative stress and its downstream harmful effects, including inflammasome activation, neuroinflammation, and neurodegeneration. Further evaluation in a dose-dependent manner would be worth it in order to find a suitable dose regimen for NDs.


Sign in / Sign up

Export Citation Format

Share Document