The sampling Period as a Control Parameter

1994 ◽  
Vol 27 (3) ◽  
pp. 377-382
Author(s):  
I. Lopez ◽  
S. Dormido ◽  
F. Morilla
2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2049-2052 ◽  
Author(s):  
G. Buitrón ◽  
A. Koefoed ◽  
B. Capdeville

The microbial activity during the aerobic acclimation of activated sludge to phenol was studied. Carbon dioxide evolution rate (CER), measured in a sequencing batch reactor coupled to an infra-red system, was utilized as the activity control parameter. It was found that CER is representative of the microbial metabolism. Moreover, it was observed that starvation periods during acclimation had a negative effect on biodegradation rate.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 7-14 ◽  
Author(s):  
A. Schnell ◽  
M. J. Sabourin ◽  
S. Skog ◽  
M. Garvie

As part of an extensive audit of the Alkaline-Peroxide Mechanical Pulping (APMPTM) plant at the Malette Quebec Inc. mill in St. Raymond, Que., effluents were sampled from various stages of the process for comprehensive chemical characterizations, aquatic toxicity testing and anaerobic biotreatability assessments. In addition, untreated and secondary treated combined effluent from the integrated paper mill were sampled to determine the effectiveness of a conventional activated sludge process at the mill site. During the one-day sampling period, the APMP plant processed a mixed wood furnish consisting of 50% spruce/balsam fir and 50% aspen, with a chemical charge of 3.5% sodium hydroxide and 3.8% hydrogen peroxide on oven-dry fibre, while the Machine Finish Coated (MFC) paper production rate was 100 odt/d (oven dry metric tonnes per day). Measured production-specific contaminant discharge loadings from the novel APMP process were 56 kg BOD5/odt and 155 kg COD/odt in a combined effluent flow of 28 m3/odt. Sources of process effluent were chip washing, three stages of wood chip pretreatment and chemical impregnation (i.e., Impressafiner stages), interstate washing and pulp cleaning. The three Impressafiner pressates were found to be the most concentrated (i.e., 12-26 g COD/L) and toxic streams. Microtox testing of the pressates revealed EC50 concentrations of 0.07-0.34% v/v. The warm and concentrated effluents generated by the non-sulphur APMP process were found to be highly amenable to anaerobic degradation as determined by batch bioassay testing. Filterable BOD5 and COD(f) of the process effluents were reduced by 87-95% and 70-77%, respectively, with corresponding theoretical methane yields being attained. Acid-soluble dissolved lignin compounds exhibited biorecalcitrance, as revealed by limited removals of 34-55%, and were the main constituents contributing to residual COD(f), while resin and fatty acids (RFA) were reduced by 80-94%. The conservatively operated full scale activated sludge treatment process achieved a similar high 74% COD(f) removal from the whole mill effluent, while BOD5 and RFA reductions were virtually complete and the treated effluent was non-toxic, as measured by Microtox.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 18669-18680 ◽  
Author(s):  
Bingkun Li ◽  
Yuansheng Liang ◽  
Gang Wang ◽  
Haifeng Li ◽  
Xinquan Chen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Levente Kovács ◽  
Fruzsina Luca Kézér ◽  
Szilárd Bodó ◽  
Ferenc Ruff ◽  
Rupert Palme ◽  
...  

AbstractThe intensity and the magnitude of saliva cortisol responses were investigated during the first 48 h following birth in newborn dairy calves which underwent normal (eutocic, EUT, n = 88) and difficult (dystocic, DYS, n = 70) calvings. The effects of parity and body condition of the dam, the duration of parturition, the time spent licking the calf, the sex and birth weight of the calf were also analyzed. Neonatal salivary cortisol concentrations were influenced neither by factors related to the dam (parity, body condition) nor the calf (sex, birth weight). The duration of parturition and the time spent licking the calf also had no effect on salivary cortisol levels. Salivary cortisol concentrations increased rapidly after delivery in both groups to reach their peak levels at 45 and 60 min after delivery in EUT and DYS calves, respectively supporting that the birth process means considerable stress for calves and the immediate postnatal period also appears to be stressful for newborn calves. DYS calves exhibited higher salivary cortisol concentrations compared to EUT ones for 0 (P = 0.022), 15 (P = 0.016), 30 (P = 0.007), 45 (P = 0.003), 60 (P = 0.001) and 120 min (P = 0.001), and for 24 h (P = 0.040), respectively. Peak levels of salivary cortisol and the cortisol release into saliva calculated as AUC were higher in DYS than in EUT calves for the 48-h of the sampling period (P = 0.009 and P = 0.003, respectively). The greater magnitude of saliva cortisol levels in DYS calves compared to EUT ones suggest that difficult parturition means severe stress for bovine neonates and salivary cortisol could be an opportunity for non-invasive assessment of stress during the early neonatal period in cattle.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.


Sign in / Sign up

Export Citation Format

Share Document