Fractal analysis on the spatial distribution of acoustic emission in the failure process of rock specimens

Author(s):  
R YUAN
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yutao Li ◽  
Qingwei Guo ◽  
Xunchen Liu ◽  
Yaodong Jiang ◽  
Bo Zhang ◽  
...  

Both computed tomography (CT) and notched semicircular bend (NSCB) tests are performed for coals with high and medium bursting proneness to extract the scientific expression of pore-fracture and its influence mechanism on the tensile failure behavior. The acoustic emission (AE) parameters in the sample during loading and failure are monitored, and the influence mechanism of pore-fracture on tensile failure behavior of coal is analyzed. The result illustrates that the spatial distribution feature of the pore-fracture in coals with high and medium bursting proneness is extremely different. The deformation and failure mode of the coals are affected by many factors, loading mode, notch depth and width, mechanical properties of matrix and minal, spatial distribution feature of pore-fracture, etc. The influence of primary pore-fracture in the coal on the extension and penetration of the secondary fracture could be divided into two types: bifurcation and promotion, which would cause different local damage in the sample and affect the final failure mode. The feature of acoustic emission parameters indicates that the deformation and failure process of a sample under loading could be divided into four stages: compaction stage, elastic deformation stage, displacement plastic growth stage, and post peak failure stage, which is the result of comprehensive action of many factors. The evolution process of secondary fracture is accompanied by the dissipation of elastic strain energy and the intensification of internal damage of coal, which reflects the failure process of coal.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liuqun Zhao ◽  
Li Zheng ◽  
Hui Qin ◽  
Tiesuo Geng ◽  
Yonggang Tan ◽  
...  

Concrete three-point bending beams with preexisting cracks are widely used to study the growth process of I-II mixed mode cracks. Studying the failure characteristics of preexisting cracks at different locations on concrete three-point bending beams not only has important scientific significance but also has a wide range of engineering application backgrounds in the safety assessment of engineering structures. In this paper, through several numerical experiments, the influence of preexisting cracks at different positions on the failure characteristics of concrete three-point bending beams is studied, and three typical failure modes are obtained. The failure process of the specimens with three typical failure modes is discussed in detail, and it is pointed out that the crack failure mode is tensile failure. The change trends of bearing capacity, acoustic emission quantity, and acoustic emission energy of three typical failure modes are analyzed. The maximum bearing capacity, the maximum acoustic emission quantity, and energy of three failure modes of concrete three-point bending beams generally show an increasing trend.


2020 ◽  
Vol 374 ◽  
pp. 241-249 ◽  
Author(s):  
Honglian Li ◽  
Lei Zhou ◽  
Yiyu Lu ◽  
Fazhi Yan ◽  
Jiankun Zhou ◽  
...  

1998 ◽  
Vol 37 (Part 1, No. 2) ◽  
pp. 602-605 ◽  
Author(s):  
Hideaki Aburatani ◽  
John P. Witham ◽  
Kenji Uchino

2011 ◽  
Vol 378-379 ◽  
pp. 43-46 ◽  
Author(s):  
Tao Xie ◽  
Qing Hui Jiang ◽  
Rui Chen ◽  
Wei Zhang

With RMT-150C rock testing machine and AEWIN E1.86 DISP acoustic emission system applied, the acoustic emission test was accomplished with two kinds of rock samples including marble and granite under uniaxial compression. Cyclic loading and continuous loading were used through the experiment, and the mechanical performance and acoustic emission (AE) characteristics were obtained during the process of rock progressive failure. Details related to the relationship between amount of AE and stress-strain was given in this paper. A comparison between marble and granite was made as well following the general AE law, on the basis of which, the failure mechanism of rock mass was investigated. Finally, some conclusions can be summarized as follows:(1) AE activity features are different with stress state variation in rock failure process;(2) loading patterns make a direct impact on the failure process thereby affecting AE activities;(3)AE activities are various basing on the different types of rocks, structures and failure modes.


2010 ◽  
Vol 34-35 ◽  
pp. 383-386 ◽  
Author(s):  
Hua Yan Yao ◽  
Peng Zhi Pan

Rock is a natural heterogeneous material and presents complicated behaviors in the fracturing process. It is prevail to study the basic failure mechanism of rocks via numerical simulation. Based on the elasto-plastic cellular automaton (EPCA) model, this paper simulates single pre-fractured rock fracturing process with consideration of rock heterogeneity on the meso-scale. In this model, the Weibull’s distribution, which characterizes heterogeneity with the homogeneous index m and the random seed parameter s, is adopted to describe the distribution of mechanical parameters of rock specimens such as cohesive strength, Young’s modulus, etc. Pre-existing crack rock specimens with different homogeneous index or the different random seed are simulated by EPCA under uniaxial compression. Numerical results show that heterogeneity has great influence on pre-fractured rock failure process, final failure modes, and the uniaxial compressive strength.


2012 ◽  
Vol 232 ◽  
pp. 28-32 ◽  
Author(s):  
Alexander Urbahs ◽  
Mukharbiy Banov ◽  
Vladislav Turko ◽  
Kristine Tsaryova

The work is dedicated to the experimental study of micromechanics process of unidirectional composite materials’ specimens under static loading till its fracture using acoustic emission method compared with the strain-load deformation curve. An attempt is made to identify subtle effects of the failure process of the composite material which is impossible using the traditional methods of the strain measurement. The prospect of applying the method of acoustic emission (AE) for the development and improvement of existing methods of model tense- analysis is shown. The characteristic stages of the damage accumulation for unidirectional composites’ specimens and the effect of training on these processes are shown experimentally. It’s shown that the AE-deformation diagram have three stages in contrast to commonly used load-strain deformation curve with one stage. So it become possible to investigate the physical process of composite unit’s fracture under static load.


Sign in / Sign up

Export Citation Format

Share Document