P-074: Assessing the immune microenvironment with multiplex immunofluorescence histochemistry demonstrates proximity of cytotoxic T-cells to plasma cells in patients with newly diagnosed multiple myeloma

2021 ◽  
Vol 21 ◽  
pp. S79-S80
Author(s):  
Slavisa Ninkovic ◽  
Simon Harrison ◽  
Louise Purton ◽  
Hang Quach
2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Alissa Visram ◽  
Surendra Dasari ◽  
Emilie Anderson ◽  
Shaji Kumar ◽  
Taxiarchis V. Kourelis

AbstractImmunotherapy has shown efficacy in relapsed multiple myeloma (MM). However, these therapies may depend on a functional tumor immune microenvironment (iTME) for their efficacy. Characterizing the evolution of the iTME over the disease course is necessary to optimize the timing of immunotherapies. We performed mass cytometry, cytokine analysis, and RNA sequencing on bone marrow samples from 39 (13 newly diagnosed [NDMM], 11 relapsed pre-daratumumab exposure [RMM], and 13 triple-refractory [TRMM]) MM patients. Three distinct cellular iTME clusters were identified; cluster 1 comprised mainly of NDMM and RMM patients; and clusters 2 and 3 comprised primarily of TRMM patients. We showed that naive T cells were decreased in clusters 2 and 3, cluster 2 was characterized by increased senescent T cells, and cluster 3 by decreased early memory T cells. Plasma cells in clusters 2 and 3 upregulated E2F transcription factors and MYC proliferation pathways, and downregulated interferon, TGF-beta, interleuking-6, and TNF-αlpha signaling pathways compared to cluster 1. This study suggests that the MM iTME becomes increasingly dysfunctional with therapy whereas the MM clone may be less dependent on inflammation-mediated growth pathways and less sensitive to IFN-mediated immunosurveillance. Our findings may explain the decreased sensitivity of TRMM patients to novel immunotherapies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1492-1492
Author(s):  
Grzegorz S. Nowakowski ◽  
Chin-Yang Li ◽  
David Dingli ◽  
Shaji Kumar ◽  
Morie A. Gertz ◽  
...  

Abstract Background: Cytotoxic T-cell infiltrates are a nearly universal finding in the bone marrow of patients with multiple myeloma. It has been postulated that presence of T-cells in the bone marrow of multiple myeloma (MM) patients represents an immune response against the tumor and therefore, might be associated with an improved prognosis. However, the impact of bone marrow T-cells on the prognosis of multiple myeloma patients has not been studied systematically. Methods: Bone marrow biopsies of patients with newly diagnosed multiple myeloma were stained by immnohistochemistry for the CD8 antigen and reviewed by a blinded hematopathologist. Three high power fields are reviewed for each biopsy and the total number of CD8 positive cells counted and reported. For patients with more than 300 cells per 3 fields, results were reported as >300. The number of bone marrow CD8 positive cells was then correlated with patients’ clinical data, including other prognostic factors and overall survival. Results: Bone marrow biopsy specimens from 100 patients, performed within the week of a diagnosis of multiple myeloma and collected between May 1998 and January 2001 were evaluated. The median number of CD8 positive cells was 270 (33 – >300). Patients’ characteristics are shown in Table 1. Median follow up was 30 months (0–80). The number of cytotoxic T-cells as a continuous variable was a risk factor for shortened overall survival, HR 1.86 (95% CI 1.11–3.35). Using minimal p value approach, the cutoff of 270 cells (the median) risk stratified patients into two groups: the median survival of patients with > 270 CD8 positive cells was 16 months vs. 48 months in patients with ≤270 cells, p=0.005 (Figure). In multivariate analysis including age, B2M, albumin, CRP, bone marrow plasma cell percentage and plasma cell labeling index, the number of cytotoxic T-cells was an independent predictor of overall survival was HR 3.1, p=0.0017. Conclusion: We show that the number of cytotoxic T-cells in the bone marrow is a strong and independent prognostic factor in patients with newly diagnosed multiple myeloma. Our observation does not contradict the hypothesis that cytotoxic T-cells participate in an immune response against the tumor since our findings may represent a higher level of immune response associated with baseline aggressive disease biology. However, our study suggests for the first time that increased marrow cytotoxic T-cells have an adverse effect on outcome in myeloma, and suggest that these cells may have a direct facilitating effect on tumor growth and on the marrow microenvironment. Further studies of the biology of behind this observation are warranted. Characteristic N Median (range) Gender male 61 CRP 81 0.4mg/L (0.01–11.2) Albumin 99 3.6 g/dL (2.6–5.4) B2microglobulin 94 4.0 (0.9–28) μg/mL Marrow PC% 90 45% (11–99) PC labeling index 90 high (>1%) 36 BM CD8 cells 100 270 (33 – >300) ISS 94 1 19 2 41 3 34 Figure Figure


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A795-A795
Author(s):  
Hyeonbin Cho ◽  
Jae-Hwan Kim ◽  
Ji-Hyun Kim

BackgroundCancer immunotherapy (CIT) has substantially improved the survival of cancer patients. However, according to recent studies, liver metastasis was reported to predict worse outcomes for CIT. The main objective of the study is to evaluate the differences in the immune microenvironment (IME) between the primary lung cancer (PL) and synchronous liver metastasis (LM) using a multispectral imaging system.MethodsSix immune markers (CD4, CD8, CTLA-4, granzyme B (GZB), Foxp3 and PD-L1) were analyzed using a multiplex IHC system and inForm program (Akoya) on paired lung-liver samples of 10 patients. Cells were categorized into tumor nest and stroma, and cell counts per unit area were measured for comparison.ResultsThe number of tumor-infiltrating cytotoxic T cells (TIL) in PL (262.5 cells/mm2) was higher than that of LM (113.3 cells/mm2). Additionally, the ratio between the number of TIL and non-TIL was greater in PL (0.31) compared to that of LM (0.26). A similar trend appeared for Helper T cells and regulatory T cells (Treg), as PL consisted of higher numbers of T cells (791.8 Helper T cells/mm2, 195.7 Treg/mm2) than LM (626.3 Helper T cells/mm2, 121.3 Treg/mm2). However, cytotoxic T cells exhibiting GZB+ and CTLA-4- were fewer in PL (140.2 cells/mm2) than in LM (203.3 cells/mm2), and the ratio is 0.69. The mean number of GZB+ TIL in PL (32.5 cells/mm2) was lower than in LM (35.3 cells/mm2), and their proportions among total TIL counts were 0.12 and 0.31, respectively. In PL, GZB+: GZB- ratio is 0.16 while the ratio is 1.91 for LM. A fewer number of TILs exhibiting GZB suggests that PL has lower efficiency in immune response than LM. Another crucial checkpoint receptor that inhibits immune response, CTLA-4, was more prevalent in PL, with CTLA-4+: CTLA-4- ratio in Treg being 0.36 in PL, compared to 0.11 in LM. The tumor proportion score (TPS) of PD-L1 was higher in PL than LM (40.0 vs. 6.6).ConclusionsIn our study, we showed the differences in the numbers of TIL or regulatory T cells and expressions of immune checkpoint receptors (PD-L1, CTLA-4), which significantly influence outcomes for CIT. The study is ongoing to confirm different IME between the PL and LM groups in a larger tumor cohort.ReferencesPeng, Jianhong, et al., Immune Cell Infiltration in the Microenvironment of Liver Oligometastasis from Colorectal Cancer: Intratumoural CD8/CD3 Ratio Is a Valuable Prognostic Index for Patients Undergoing Liver Metastasectomy. Cancers 2019 Dec; 11(12): 1922. https://doi.org/10.3390/cancers11121922Tumeh, Paul C., et al., Liver Metastasis and treatment outcome with Anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res 2017 May; 5(5): 417–424. doi: 10.1158/2326-6066.CIR-16-0325Parra, E.R., Immune Cell Profiling in Cancer Using Multiplex Immunofluorescence and Digital Analysis Approaches; Streckfus, C.F., Ed.; IntechOpen: London, UK, 2018; pp. 1–13. doi: 10.5772/intechopen.80380Ribas, A., Hu-Lieskovan, S., What does PD-L1 positive or negative mean?. The Journal of Experimental Medicine 2016;213(13):2835–2840. https://doi.org/10.1084/jem.20161462


Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2543-2553 ◽  
Author(s):  
Annemiek Broyl ◽  
Dirk Hose ◽  
Henk Lokhorst ◽  
Yvonne de Knegt ◽  
Justine Peeters ◽  
...  

Abstract To identify molecularly defined subgroups in multiple myeloma, gene expression profiling was performed on purified CD138+ plasma cells of 320 newly diagnosed myeloma patients included in the Dutch-Belgian/German HOVON-65/GMMG-HD4 trial. Hierarchical clustering identified 10 subgroups; 6 corresponded to clusters described in the University of Arkansas for Medical Science (UAMS) classification, CD-1 (n = 13, 4.1%), CD-2 (n = 34, 1.6%), MF (n = 32, 1.0%), MS (n = 33, 1.3%), proliferation-associated genes (n = 15, 4.7%), and hyperdiploid (n = 77, 24.1%). Moreover, the UAMS low percentage of bone disease cluster was identified as a subcluster of the MF cluster (n = 15, 4.7%). One subgroup (n = 39, 12.2%) showed a myeloid signature. Three novel subgroups were defined, including a subgroup of 37 patients (11.6%) characterized by high expression of genes involved in the nuclear factor kappa light-chain-enhancer of activated B cells pathway, which include TNFAIP3 and CD40. Another subgroup of 22 patients (6.9%) was characterized by distinct overexpression of cancer testis antigens without overexpression of proliferation genes. The third novel cluster of 9 patients (2.8%) showed up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 as well as SOCS3. To conclude, in addition to 7 clusters described in the UAMS classification, we identified 3 novel subsets of multiple myeloma that may represent unique diagnostic entities.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1320
Author(s):  
Antonio Pierro ◽  
Alessandro Posa ◽  
Costanzo Astore ◽  
Mariacarmela Sciandra ◽  
Alessandro Tanzilli ◽  
...  

Multiple myeloma is a hematological malignancy of plasma cells usually detected due to various bone abnormalities on imaging and rare extraosseous abnormalities. The traditional approach for disease detection was based on plain radiographs, showing typical lytic lesions. Still, this technique has many limitations in terms of diagnosis and assessment of response to treatment. The new approach to assess osteolytic lesions in patients newly diagnosed with multiple myeloma is based on total-body low-dose CT. The purpose of this paper is to suggest a guide for radiologists in performing and evaluating a total-body low-dose CT in patients with multiple myeloma, both newly-diagnosed and in follow-up (pre and post treatment).


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4462-4462
Author(s):  
Xiu Ly Song ◽  
Raphaël Szalat ◽  
Alexis Talbot ◽  
HaiVu Nguyen ◽  
Mehmet K. Samur ◽  
...  

Abstract In Multiple Myeloma (MM), the t(4;14) translocation is associated with a poor outcome. However, beside this translocation, the genetic events which determine the adverse evolution of the disease and the resistance to treatments remain elusive. In this study we performed whole exome or RNA sequencing analysis of samples from 65 newly diagnosed t(4;14) MM. We found that NRAS, KRAS, MAPK and FGFR3 are frequently mutated (12%, 9%, 13.8%, and 20% respectively). Overall, the FGFR3/RAS/BRAF/MAPK genes were mutated in 36 cases (54%). There was a negative correlation between mutations in FGFR3 and those occurring in NRAS, KRAS and BRAF as expected from the mutually exclusive occurrence of mutations in these genes. In addition to alterations in TP53 and DIS3, we found marked elevated frequency of mutations in PRKD2 (10.7%), ATM/ATR (10.7%) and MYCBP2 (7.6%), reduced frequency in FAM46C (1.5%) and no mutation in TRAF3 and CCND1. Mutations in ATM/ATR were strongly associated with the MB4-2 breakpoint (Bp) (p = 1.62 10-4) and significantly correlated with mutations affecting genes coding for members of the MAPK family. We observed a positive correlation between non-silent mutations in PRKD2 and the MB4-1 or MB4-3 Bp (p = 1.3 10-2). Of note, PRKD2 mutations are exclusively found in 3 t(4;14) MM cell lines and among the 84 MM sequenced by Bolli et al. (1), none of the non t(4;14) patient were mutated in PRKD2, indicating that this genetic lesion is associated with t(4;14) MM. In the NCI-H929 t(4;14) MM cell line, which is mutated for PRKD2, encoding the PKD2 serine/threonine kinase, we observed elevated levels of phosphorylated PKD2. Furthermore, inhibition of PKD, decreased PKD2 phosphorylation and triggered reduced proliferation and apoptosis of MM cell lines and fresh plasma cells from patients in vitro. These results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Altogether, these results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Reference 1. Bolli, N., Avet-Loiseau, H., Wedge, D.C., Van Loo, P., Alexandrov, L.B., Martincorena, I., Dawson, K.J., Iorio, F., Nik-Zainal, S., Bignell, G.R., et al. (2014). Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5, 2997. Disclosures Munshi: Janssen: Consultancy; Takeda: Consultancy; Celgene: Consultancy; Amgen: Consultancy; Merck: Consultancy; Pfizer: Consultancy; Oncopep: Patents & Royalties.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Dina Soliman ◽  
Sherin Sallam ◽  
Susanna Akiki ◽  
Deena Mudawi ◽  
Feryal Ibrahim

T-cell large granular lymphocytic leukemia is characterized by clonal expansion of a CD3+/CD57+ subpopulation, which are typically CD8+ positive cytotoxic T- cells, and can only be diagnosed if there is a persistent, greater than 6 months, elevation of LGL in the blood (usually 2–20 × 109/L), in the absence of an identifiable cause. T-LGLL has been associated with reactive conditions such as autoimmune diseases and viral infections and has also been reported in association with hematologic and non-hematologic malignancies. We report a case of asymptomatic CD4/CD8 double-positive T-LGLL. Flow cytometry on peripheral blood revealed a subpopulation of CD4/CD8 double-positive T cells expressing CD57 and cTIA. Clonality was established by flow cytometric analysis of T-cell receptor V(â) region repertoire which showed that >70% of the cells failed to express any of the tested V(â) regions. Clonality was further confirmed by PCR with the detection of clonal TCR beta and TCR gamma gene rearrangements. Six months later, she presented with persistent lower back pain and diagnosed with IgG kappa multiple myeloma. CD4/CD8 double-positive T-large granular leukemia is the first case reported in the literature. This rare phenotype is either underreported or a truly rare clinical entity. More studies are warranted to characterize the pathogenesis and clinical characteristics of this group of patients and to further assess the relationship between multiple myeloma and T-LGLL as a cause-and-effect relationship or simply related to the time at which diagnosis has been made.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jean-Baptiste Alberge ◽  
Florence Magrangeas ◽  
Mirko Wagner ◽  
Soline Denié ◽  
Catherine Guérin-Charbonnel ◽  
...  

Abstract Background Multiple myeloma (MM) is a heterogeneous plasma cell malignancy that remains challenging to cure. Global hypomethylation correlates with an aggressive phenotype of the disease, while hypermethylation is observed at particular regions of myeloma such as B cell-specific enhancers. The recently discovered active epigenetic mark 5-hydroxymethylCytosine (5hmC) may also play a role in tumor biology; however, little is known about its level and distribution in myeloma. In this study, we investigated the global level and the genomic localization of 5hmC in myeloma cells from 40 newly diagnosed patients, including paired relapses, and of control individuals. Results Compared to normal plasma cells, we found global 5hmC levels to be lower in myeloma (P < 0.001). Higher levels of 5hmC were found in lower grades of the International Staging System prognostic index (P < 0.05) and tend to associate with a longer overall survival (P < 0.1). From the hydroxymethylome data, we observed that the remaining 5hmC is organized in large domains overlapping with active chromatin marks and chromatin opening. We discovered that 5hmC strongly persists at key oncogenic genes such as CCND1, CCND2 and MMSET and characterized domains that are specifically hydroxymethylated in myeloma subgroups. Novel 5hmC-enriched domains were found at putative enhancers of CCND2 and MYC in newly diagnosed patients. Conclusions 5hmC level is associated with clinical aspects of MM. Mapping 5hmC at a genome-wide level provides insights into the disease biology directly from genomic DNA, which makes it a potent mark to study epigenetics on large patient cohorts.


Sign in / Sign up

Export Citation Format

Share Document