Inactivation of Candida auris and Candida albicans by ultraviolet-C

Author(s):  
William A. Rutala ◽  
Hajime Kanamori ◽  
Maria F. Gergen ◽  
Emily E. Sickbert-Bennett ◽  
David J. Weber

Abstract We evaluated the ability of an ultraviolet-C (UV-C) room decontamination device to kill Candida auris and C. albicans. With an organic challenge (fetal calf serum), the UV-C device demonstrated the following log10 reductions for C. auris of 4.57 and for C. albicans of 5.26 with direct line of sight, and log10 reductions for C. auris of 2.41 and for C. ablicans of 3.96 with indirect line of sight.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S437-S437
Author(s):  
Jennifer Cadnum ◽  
Annette Jencson ◽  
Sarah Redmond ◽  
Thriveen Sankar Chittoor Mana ◽  
Curtis Donskey

Abstract Background Ultraviolet-C (UV-C) light is increasingly used as an adjunct to standard cleaning in healthcare facilities. However, most facilities do not have a means to measure UV-C to determine whether effective doses are being delivered. We tested the efficacy of 2 easy-to-use colorimetric indicators for monitoring UV-C dosing in comparison to log reductions in pathogens. Methods In a laboratory setting, we exposed methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile spores on steel disk carriers with or without an organic load (5% fetal calf serum) to UV-C for varying times resulting in fluence exposures ranging from 10,000 to 100,000 µJ/cm2. The UV-C indicators were placed adjacent to the carriers. Log reductions were calculated in comparison to untreated controls and the change in color of the indicators was correlated with dose and log reductions. Results The UV-C doses required to achieve a 3-log reduction in MRSA and C. difficile were 10,000 and 46,000 µJ/cm2, respectively. For both indicators, there was a visible color change from baseline at 10,000 µJ/cm2 and a definite final color change by 46,000 µJ/cm2 (Figure 1). Organic load had only a modest impact on UV-C efficacy. The indicators required only a few seconds to place and were easy to read (Figure 2). Conclusion UV-C doses of 10,000 and 46,000 µJ/cm2 were required to achieve 3 log reductions of MRSA and C. difficile spores, respectively. The colorimetric indicators provide an easy means to monitor UV-C dosing. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 41 (S1) ◽  
pp. s292-s292
Author(s):  
William Rutala ◽  
Hajime Kanamori ◽  
Maria Gergen ◽  
Emily Sickbert-Bennett ◽  
David Jay Weber

Background:Candida auris is an emerging fungal pathogen that is often resistant to major classes of antifungal drugs. It is considered a serious global health threat because it has caused severe infections with frequent mortality in over a dozen countries. C. auris can survive on healthcare environmental surfaces for at least 7 days, and it causes outbreaks in healthcare facilities. C. auris has an environmental route of transmission. Thus, infection prevention strategies, such as surface disinfection and room decontamination technologies (eg, ultraviolet [UV-C] light), will be essential to controlling transmission. Unfortunately, data are limited regarding the activity of UV-C to inactivate this pathogen. In this study, a UV-C device was evaluated for its antimicrobial activity against C. auris and C. albicans. Methods: We tested the antifungal activity of a single UV-C device using the vegetative bacteria cycle, which delivers a reflected dose of 12,000 µW/cm2. This testing was performed using Formica sheets (7.6 × 7.6 cm; 3 × 3 inches). The carriers were inoculated with C. auris or C. albicans and placed horizontal on the surface or vertical (ie, perpendicular) to the vertical UV-C lamp and at a distance from 1. 2 m (~4 ft) to 2.4 m (~8 ft). Results: Direct UV-C, with or without FCS (log10 reduction 4.57 and 4.45, respectively), exhibited a higher log10 reduction than indirect UV-C for C. auris (log10 reduction 2.41 and 1.96, respectively), which was statistically significant (Fig. 1 and Table 1). For C. albicans, although direct UV-C had a higher log10 reduction (log10 reduction with and without FCS, 5.26 and 5.07, respectively) compared to indirect exposure (log10 reduction with and without FCS, 3.96 and 3.56, respectively), this difference was not statistically significant. The vertical UV had statistically higher log10 reductions than horizontal UV against C. auris and C. albicans with FCS and without FCS. For example, for C. auris with FCS the log10 reduction for vertical surfaces was 4.92 (95% CI 3.79, 6.04) and for horizontal surfaces the log10 reduction was 2.87 (95% CI, 2.36–3.38). Conclusions:C. auris can be inactivated on environmental surfaces by UV-C as long as factors that affect inactivation are optimized (eg, exposure time). These data and other published UV-C data should be used in developing cycle parameters that prevent contaminated surfaces from being a source of acquisition by staff or patients of this globally emerging pathogen.Funding: NoneDisclosures: None


2017 ◽  
Vol 39 (1) ◽  
pp. 94-96 ◽  
Author(s):  
Jennifer L. Cadnum ◽  
Aaron A. Shaikh ◽  
Christina T. Piedrahita ◽  
Annette L. Jencson ◽  
Emily L. Larkin ◽  
...  

Mobile ultraviolet-C (UV-C) light room decontamination devices are frequently used as an adjunct to standard cleaning in healthcare facilities, but their efficacy in killing Candida species is not clear. In laboratory testing, the emerging multidrug-resistant Candida auris and 2 other Candida species were significantly less susceptible to killing by UV-C than methicillin-resistant Staphylococcus aureus.Infect Control Hosp Epidemiol 2018;39:94–96


Author(s):  
Basya S. Pearlmutter ◽  
Muhammed F. Haq ◽  
Jennifer L. Cadnum ◽  
Annette L. Jencson ◽  
Matthew Carlisle ◽  
...  

Abstract Background: Ultraviolet-C (UV-C) light devices could be useful to reduce environmental contamination with Candida auris. However, variable susceptibility of C. auris strains to UV-C has been reported, and the high cost of many devices limits their use in resource-limited settings. Objective: To evaluate the efficacy of relatively low-cost (<$15,000 purchase price) UV-C devices against C. auris strains from the 4 major phylogenetic clades. Methods: A modification of the American Society for Testing and Materials (ASTM) standard quantitative disk carrier test method (ASTM E 2197) was used to examine and compare the effectiveness of UV-C devices against C. auris, methicillin-resistant Staphylococcus aureus (MRSA), and bacteriophage Phi6. Reductions of 3 log10 were considered effective. UV-C irradiance measurements and colorimetric indicators were used to assess UV-C output. Results: Of 8 relatively low-cost UV-C devices, 6 met the criteria for effective decontamination of C. auris isolates from clades I and II, MRSA, and bacteriophage Phi6, including 3 room decontamination devices and 3 UV-C box devices. Candida auris isolates from clades III and IV were less susceptible to UV-C than clade I and II isolates; 1 relatively low-cost room decontamination device and 2 enclosed box devices met the criteria for effective decontamination of clade III and IV isolates. UV-C irradiance measurements and colorimetric indicator results were consistent with microorganism reductions. Conclusions: Some relatively low-cost UV-C light technologies are effective against C. auris, including isolates from clades III and IV with reduced UV-C susceptibility. Studies are needed to evaluate the effectiveness of UV-C devices in clinical settings.


2010 ◽  
Vol 9 (9) ◽  
pp. 1383-1397 ◽  
Author(s):  
Leanne O'Connor ◽  
Nicole Caplice ◽  
David C. Coleman ◽  
Derek J. Sullivan ◽  
Gary P. Moran

ABSTRACT Candida dubliniensis is closely related to Candida albicans; however, it is responsible for fewer infections in humans and is less virulent in animal models of infection. C. dubliniensis forms fewer hyphae in vivo, and this may contribute to its reduced virulence. In this study we show that, unlike C. albicans, C. dubliniensis fails to form hyphae in yeast extract-peptone-dextrose (YPD) medium supplemented with 10% (vol/vol) fetal calf serum (YPDS medium). However, C. dubliniensis filaments in water plus 10% (vol/vol) fetal calf serum (WS), and this filamentation is inhibited by the addition of peptone and glucose. Repression of filamentation in YPDS medium could be partly overcome by preculture in synthetic Lee's medium. Unlike C. albicans, inoculation of C. dubliniensis in YPDS medium did not result in increased UME6 transcription. However, >100-fold induction of UME6 was observed when C. dubliniensis was inoculated in nutrient-poor WS medium. The addition of increasing concentrations of peptone to WS medium had a dose-dependent effect on reducing UME6 expression. Transcript profiling of C. dubliniensis hyphae in WS medium identified a starvation response involving expression of genes in the glyoxylate cycle and fatty acid oxidation. In addition, a core, shared transcriptional response with C. albicans could be identified, including expression of virulence-associated genes including SAP456, SAP7, HWP1, and SOD5. Preculture in nutrient-limiting medium enhanced adherence of C. dubliniensis, epithelial invasion, and survival following coculture with murine macrophages. In conclusion, C. albicans, unlike C. dubliniensis, appears to form hyphae in liquid medium regardless of nutrient availability, which may account for its increased capacity to cause disease in humans.


2020 ◽  
Vol 41 (12) ◽  
pp. 1384-1387
Author(s):  
Piyali Chatterjee ◽  
Hosoon Choi ◽  
Brennan Ochoa ◽  
Gennifer Garmon ◽  
John D. Coppin ◽  
...  

AbstractBackground:Candida auris is an emerging and often multidrug-resistant fungal pathogen with an exceptional ability to persist on hospital surfaces. These surfaces can act as a potential source of transmission. Therefore, effective disinfection strategies are urgently needed. We investigated the efficacy of ultraviolet C light (UV-C) disinfection for C. auris isolates belonging to 4 different clades.Methods:In vitro testing of C. auris isolates was conducted using 106 colony-forming units (CFU) spread on 20-mm diameter steel carriers and exposed to a broad-spectrum UV-C light source for 10, 20, and 30 minutes at a 1.5 m (5 feet) distance. Post-UV survivors on the coupons were subsequently plated. Colony counts and log reductions were recorded, calculated, and compared to untreated control carriers. Identification of all isolates were confirmed by MALDI-TOF and morphology was visualized by microscopy.Results:We observed an increased susceptibility of C. auris to UV-C in 8 isolates belonging to clades I, II and IV with increasing UV exposure time. The range of log kill (0.8–1.19) was highest for these isolates at 30 minutes. But relatively no change in log kill (0.04–0.35) with increasing time in isolates belonging to clade III were noted. Interestingly, C. auris isolates susceptible to UV-C were mostly nonaggregating, but the isolates that were more resistant to UV exposure formed aggregates.Conclusions:Our study suggests variability in susceptibility to UV-C of C. auris isolates belonging to different clades. More studies are needed to assess whether a cumulative impact of prolonged UV-C exposure provides additional benefit.


Author(s):  
A. B. Taylor ◽  
G. C. Cole ◽  
M. A. Holcomb ◽  
C. A. Baechler

An aliquot from a continuous fermenter culture of baby hamster kidney cells (BHK-21 Clone PD-4) (Wistar) maintained in Ca free Eagle's Basal Medium containing 2% Kaolin adsorbed fetal calf serum was planted in spinner flasks at 300,000 cells per ml, total volume 600 ml. After equilibration for one day at 35°C to insure that cells were in log phase, the culture was infected with the M-33-AGMK25 BHK-219 strain of rubella at an input multiplicity of about 6 TCID50 per cell. The virus was identified with specific rubella antiserum.Preliminary experiments had shown that such cultures would reach a peak or plateau HA titer of approximately 1:64, 24 hrs after inoculation and would continue to yield virus for 6 to 12 days. One hundred ml aliquot harvests were withdrawn daily and the culture was returned to volume with growth medium and incubation continued. The harvested cells were spun down rapidly at 2500 rpm per 15 mins., fixed in 3.7% gluteraldehyde in Ca free phosphate buffer saline, and post fixed in osmium tetraoxide. After dehydration, the cells were embedded in Epon 812 and cured approximately 20 hrs at 60°C.


Author(s):  
Li-Chu Tung ◽  
Yung-Reui Chen ◽  
Shiu-Nan Chen ◽  
Guang-Hsiung Kuo

In the present study, the ultrastructural changes of BPK cells, a fibroblast-like cell line, derived from the kidney of juvenile black porgy Acanthopagrus schlegeli, under heat shock treatment are described.The BPK cells were maintained in L-15 medium supplemented with 10% fetal calf serum and 0.15 M NaCl at 28|C2. The heating was carried out in precalibrated water baths. Monolayers of cells, grown on coverslips in parafilm-sealed petri dishes were submerged under water for 30 min at 40|C treatments. Cells were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer supplemented with 6.6% sucrose, postfixed in 1% OsO4 and flat embedded in Spurr’s resin. Silver section were cut parallel to the substratum, stained with uranyl acetate and Reynold’s lead citrate, and examined in a Hitachi H-600 electron microscope at 75 KV.


2020 ◽  
Vol 41 (S1) ◽  
pp. s33-s33
Author(s):  
Michihiko Goto ◽  
Erin Balkenende ◽  
Gosia Clore ◽  
Rajeshwari Nair ◽  
Loretta Simbartl ◽  
...  

Background: Enhanced terminal room cleaning with ultraviolet C (UVC) disinfection has become more commonly used as a strategy to reduce the transmission of important nosocomial pathogens, including Clostridioides difficile, but the real-world effectiveness remains unclear. Objectives: We aimed to assess the association of UVC disinfection during terminal cleaning with the incidence of healthcare-associated C. difficile infection and positive test results for C. difficile within the nationwide Veterans Health Administration (VHA) System. Methods: Using a nationwide survey of VHA system acute-care hospitals, information on UV-C system utilization and date of implementation was obtained. Hospital-level incidence rates of clinically confirmed hospital-onset C. difficile infection (HO-CDI) and positive test results with recent healthcare exposures (both hospital-onset [HO-LabID] and community-onset healthcare-associated [CO-HA-LabID]) at acute-care units between January 2010 and December 2018 were obtained through routine surveillance with bed days of care (BDOC) as the denominator. We analyzed the association of UVC disinfection with incidence rates of HO-CDI, HO-Lab-ID, and CO-HA-LabID using a nonrandomized, stepped-wedge design, using negative binomial regression model with hospital-specific random intercept, the presence or absence of UVC disinfection use for each month, with baseline trend and seasonality as explanatory variables. Results: Among 143 VHA acute-care hospitals, 129 hospitals (90.2%) responded to the survey and were included in the analysis. UVC use was reported from 42 hospitals with various implementation start dates (range, June 2010 through June 2017). We identified 23,021 positive C. difficile test results (HO-Lab ID: 5,014) with 16,213 HO-CDI and 24,083,252 BDOC from the 129 hospitals during the study period. There were declining baseline trends nationwide (mean, −0.6% per month) for HO-CDI. The use of UV-C had no statistically significant association with incidence rates of HO-CDI (incidence rate ratio [IRR], 1.032; 95% CI, 0.963–1.106; P = .65) or incidence rates of healthcare-associated positive C. difficile test results (HO-Lab). Conclusions: In this large quasi-experimental analysis within the VHA System, the enhanced terminal room cleaning with UVC disinfection was not associated with the change in incidence rates of clinically confirmed hospital-onset CDI or positive test results with recent healthcare exposure. Further research is needed to understand reasons for lack of effectiveness, such as understanding barriers to utilization.Funding: NoneDisclosures: None


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 801
Author(s):  
Talita Nicolau ◽  
Núbio Gomes Filho ◽  
Andrea Zille

In normal conditions, discarding single-use personal protective equipment after use is the rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece respirators. When the demand for these protective tools is not satisfied by the companies supplying them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators. To achieve this goal, we adopted a systematic literature review in multiple databases added to a snowball method to make our sample as robust as possible and encompass a more significant number of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods. Combining this characteristic with other advantages makes UV-C sterilization desirable compared to other methods, despite its possible disadvantages.


Sign in / Sign up

Export Citation Format

Share Document