3D flow measurements in regular breaking waves past a fixed submerged bar on an impermeable plane slope

2016 ◽  
Vol 802 ◽  
pp. 490-527 ◽  
Author(s):  
M. Clavero ◽  
S. Longo ◽  
L. Chiapponi ◽  
M. A. Losada

The velocity fields induced by regular breaking waves past a fixed bar on a 1 : 10 rigid plane slope were measured and analysed using a volumetric particle-tracking velocimetry system. Under specific conditions, the interaction between waves and morphological features steepens the waves, which eventually break. The geometry of the boundaries of the present experiments is common in natural environments, where reefs, sand and gravel bars, and submerged coastal structures, interact with the incoming wave field, ‘affecting’ the transport budget of substances (sediment, nutrients and pollutants), with relevant consequences on the water quality. The aims of the present work are the analysis of the flow field in the breaker, and the quantification of the terms in the equations usually adopted for modelling the flow and the turbulence. Two sets of attacking monochromatic wave trains with different periods and heights were used to generate a data set of instantaneous velocity, which was further analysed to extract turbulence. The measurement volume extended from the wave crest to a portion of the domain below the wave trough. The balance of linear momentum for the average field and the balance of turbulence were scrutinized, and included all the terms in a three-dimensional (3D) approach. The analysed data and results are original and novel because they include all the contributions derived from the 3D structure of a real flow field, and constitute a huge data set for the calibration of numerical codes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Hohermuth ◽  
M. Kramer ◽  
S. Felder ◽  
D. Valero

AbstractGas–liquid flows occur in many natural environments such as breaking waves, river rapids and human-made systems, including nuclear reactors and water treatment or conveyance infrastructure. Such two-phase flows are commonly investigated using phase-detection intrusive probes, yielding velocities that are considered to be directly representative of bubble velocities. Using different state-of-the-art instruments and analysis algorithms, we show that bubble–probe interactions lead to an underestimation of the real bubble velocity due to surface tension. To overcome this velocity bias, a correction method is formulated based on a force balance on the bubble. The proposed methodology allows to assess the bubble–probe interaction bias for various types of gas-liquid flows and to recover the undisturbed real bubble velocity. We show that the velocity bias is strong in laboratory scale investigations and therefore may affect the extrapolation of results to full scale. The correction method increases the accuracy of bubble velocity estimations, thereby enabling a deeper understanding of fundamental gas-liquid flow processes.


Author(s):  
Felice Arena ◽  
Alfredo Ascanelli

The interest and the studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well known that nonlinearities influence wave crest and wave trough distributions, both deviating from Rayleigh law. In this paper a theoretical crest distribution is obtained taking into account the extension of Boccotti’s Quasi Determinism theory, up to the second order for the case of three-dimensional waves, in finite water depth. To this purpose the Fedele & Arena [2005] distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall second order model shows the theoretical confirmation of his conclusion: the crest distribution in deep water for long-crested and short crested waves are very close to each other; in shallow water the crest heights in three dimensional waves are greater than values given by long-crested model.


Author(s):  
Kusalika Ariyarathne ◽  
Kuang-An Chang ◽  
Richard Mercier

The present study investigates the velocity fields of plunging breaking waves impinging on a three-dimensional simplified ship-shape structure in a laboratory wave tank. Green water was generated as the waves break and overtop the structure. Bubble image velocimetry (BIV) was used to measure the velocity field of green water along the centerline of the deck. Two plunging wave conditions were tested and compared: one with waves impinging on the vertical wall of the structure at the initial still water level; the other with waves impacting on the horizontal deck surface. The velocity fields are quite different for the two cases even though the incoming wave heights and the wave periods are nearly identical. It was observed that the maximum horizontal velocity is higher for the case with waves compacting on the deck. The waves also passed the deck quicker than the other case. For both cases the profiles of the green water velocity shows a non-linear distribution with the maximum velocity occurring near the front of the water.


Author(s):  
Felice Arena ◽  
Alfredo Ascanelli

The interest and studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well-known that nonlinearities influence wave crest and wave trough distributions, both deviating from the Rayleigh law. In this paper, a theoretical crest distribution is obtained, taking into account the extension of Boccotti’s quasideterminism theory (1982, “On Ocean Waves With High Crests,” Meccanica, 17, pp. 16–19), up to the second order for the case of three-dimensional waves in finite water depth. To this purpose, the Fedele and Arena (2005, “Weakly Nonlinear Statistics of High Random Waves,” Phys. Fluids, 17(026601), pp. 1–10) distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall’s second order model (2000, “Wave Crest Distributions: Observations and Second-Order Theory,” J. Phys. Oceanogr., 30(8), pp. 1931–1943) shows the theoretical confirmation of his conclusion: The crest distribution in deep water for long-crested and short-crested waves are very close to each other; in shallow water the crest heights in three-dimensional waves are greater than values given by the long-crested model.


Author(s):  
J. D. Bryce ◽  
M. A. Cherrett ◽  
P. A. Lyes

Tests have been conducted at DRA Pyestock on a single-stage transonic fan which has a very high level of aerodynamic loading at the hub. The objective of the tests was to survey the flow field in detail, with emphasis on studying the 3D viscous aspects of the flow. The test module was highly instrumented. Detailed flow traversing was provided at rotor and stator exit, and replaceable stator cassettes allowed various types of on-blade instrumentation to be fitted. The test rig and instrumentation are described and detailed flow measurements, taken at peak efficiency operation on the design speed characteristic, are presented. These measurements, which are supplemented by flow visualisation results, indicate the presence of a severe endwall corner stall in the stator hub flow field. The fan was modelled using the DRA S1-S2 method and these results are also discussed.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Seiichi Ibaraki

The flow field of a high pressure ratio centrifugal compressor for turbocharger applications is investigated using a three-dimensional Navier-Stokes solver. The compressor is composed of a double-splitter impeller followed by a vaned diffuser. The flow field of the transonic open-shrouded impeller is highly three-dimensional, and it is influenced by shock waves, tip leakage vortices and secondary flows. Their interactions generate complex flow structures which are convected and distorted through the impeller blades. Both steady and unsteady computations are performed in order to understand the physical mechanisms which govern the impeller flow field while the operation ranges from choke to surge. Detailed Laser Doppler Velocimetry (LDV) flow measurements are available at various cross-sections inside the impeller blades at both design and off-design operating conditions.


Author(s):  
Bora Orcun Cakir ◽  
Andrea Sciacchitano ◽  
Gabriel Gonzalez Saiz ◽  
Bas Van Oudheusden

Three-dimensional flow measurements by Particle Tracking Velocimetry (PTV) provide scattered flow information, that often needs to be interpolated onto a regular grid. Therefore, the use of experimental data assimilation approaches such as VIC+ (Schneiders and Scarano, 2016) were proposed to enhance the instantaneously available spatial resolution limits beyond that of the PTV measurements. Nevertheless, there exists no prior attempt to perform the data assimilation when the flow is in direct contact with physical objects. Thus, in order to handle generic solid body intrusions within the flow fields of VIC+ application, the utilization of Arbitrary Lagrangian-Eulerian and immersed boundary treatment approaches of the computational fluid-structure interaction (FSI) frameworks are proposed. The introduced variants over the standard VIC+ are assessed with a high fidelity numerical test case of flow over periodic hills. The accuracy superiority of the flow field reconstructions with the proposed approaches are denoted especially in close proximity of the interaction surface. An experimental application of the introduced methods is demonstrated to compute the pressure distribution over an unsteadily moving elastic membrane surface, revealing the time-resolved interaction between the flow structures and the membrane deformations.


2006 ◽  
Vol 129 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Seiichi Ibaraki ◽  
Tetsuya Matsuo ◽  
Takao Yokoyama

Transonic centrifugal compressors are used with high-load turbochargers and turboshaft engines. These compressors usually have a vaned diffuser to increase the efficiency and the pressure ratio. To improve the performance of such a centrifugal compressor, it is required to optimize not only the impeller but also the diffuser. However the flow field of the diffuser is quite complex and unsteady because of the impeller located upstream. Although some research on vaned diffusers has been published, the diffuser flow is strongly dependent on the particular impeller exit flow, and some of the flow physics remain to be elucidated. In the research reported here, detailed flow measurements within a vaned diffuser were conducted using a particle image velocimetery (PIV). The vaned diffuser was designed with high subsonic inlet conditions marked by an inlet Mach number of 0.95 for the transonic compressor. As a result, a complex three-dimensional flow with distortion between the shroud and the hub was observed. Also, unsteady flow accompanying the inflow of the impeller wake was confirmed. Steady computational flow analysis was performed and compared with the experimental results.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Seiichi Ibaraki

A three-dimensional Navier-Stokes solver is used to investigate the flow field of a high pressure ratio centrifugal compressor for turbocharger applications. Such a compressor consists of a double-splitter impeller followed by a vane diffuser. The inlet flow to the open shrouded impeller is transonic, thus giving rise to interactions between shock waves and boundary layers and between shock waves and tip leakage vortices. These interactions generate complex flow structures which are convected and distorted through the impeller blades. Detailed Laser Doppler Velocimetry (LDV) flow measurements are available at various cross sections inside the impeller blades highlighting the presence of low velocity flow regions near the shroud. Particular attention is focused on understanding the physical mechanisms which govern the flow phenomena in the near shroud region. To this end numerical investigations are performed using different tip clearance modelizations and various turbulence models, and their impact on the computed flow field is discussed.


1999 ◽  
Vol 122 (3) ◽  
pp. 493-501 ◽  
Author(s):  
Woong-Chul Choi ◽  
Yann G. Guezennec

The work described in this paper focuses on experiments to quantify the initial fuel mixing and gross fuel distribution in the cylinder during the intake stroke and its relationship to the large-scale convective flow field. The experiments were carried out in a water analog engine simulation rig, and, hence, limited to the intake stroke. The same engine head configuration was used for the three-dimensional PTV flow field and the PLIF fuel concentration measurements. High-speed CCD cameras were used to record the time evolution of the dye convection and mixing with a 1/4 deg of crank angle resolution (and were also used for the three-dimensional PTV measurements). The captured sequences of images were digitally processed to correct for background light non-uniformity and other spurious effects. The results are finely resolved evolution of the dye concentration maps in the center tumble plane. The three-dimensional PTV measurements show that the flow is characterized by a strong tumble, as well as pairs of cross-tumble, counter-rotating eddies. The results clearly show the advection of a fuel-rich zone along the wall opposite to the intake valves and later along the piston crown. It also shows that strong out-of-plane motions further contribute to the cross-stream mixing to result in a relatively uniform concentration at BDC, albeit slightly stratified by the lean fluid entering the cylinder later in the intake stroke. In addition to obtaining phase-averaged concentration maps at various crank angles throughout the intake stroke, the same data set is processed for a large number of cycle to extract spatial statistics of the cycle-to-cycle variability and spatial non-uniformity of the concentration maps. The combination of the three-dimensional PTV and PLIF measurements provides a very detailed understanding of the advective mixing properties of the intake-generated flow field. [S0742-4795(00)00103-4]


Sign in / Sign up

Export Citation Format

Share Document