Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime

2016 ◽  
Vol 803 ◽  
pp. 516-527 ◽  
Author(s):  
Guillaume Riboux ◽  
José Manuel Gordillo

At room temperature, when a drop impacts against a smooth solid surface at a velocity above the so-called critical velocity for splashing, the drop loses its integrity and fragments into tiny droplets violently ejected radially outwards. Below this critical velocity, the drop simply spreads over the substrate. Splashing is also reported to occur for solid substrate temperatures above the Leidenfrost temperature, $T_{L}$, for which a vapour layer prevents the drop from touching the solid. In this case, the splashing morphology differs from the one reported at room temperature because, thanks to the presence of the gas layer, the shear stresses acting on the liquid can be neglected. Our purpose here is to predict, for wall temperatures above $T_{L}$, the critical Weber number for splashing as well as the maximum spreading radius. First, making use of boundary integral simulations, we calculate both the time evolution of the liquid velocity as well as the height of the sheet which is ejected tangentially to the substrate. These results are then used as boundary conditions for the one-dimensional mass and momentum equations describing the dynamics of the rim limiting the expanding liquid sheet. Our predictions for both the maximum spreading radius and for the critical Weber number for splashing are in good agreement with experimental observations.

2019 ◽  
Vol 9 (11) ◽  
pp. 2214 ◽  
Author(s):  
Yanjie Yang ◽  
Xiaoqian Chen ◽  
Yiyong Huang

The influence of apex angle and tilting angle on droplet spreading dynamics after impinging on wedge-patterned biphilic surface has been experimentally investigated. Once the droplet contacts the wedge-patterned biphilic surface, it spreads radially on the surface, with a tendency toward a more hydrophilic area. After reaching the maximum spreading diameter, the droplet contracts back. From the experimental results, the normalized diameter β ( β = D / D 0 ) was found to be related with the Weber number ( W e = ρ D V 2 / γ ) as β max ∼ W e 1 / 5 . during the first spreading process. Below 67.4°, a larger apex angle can help a droplet to spread on the surface more quickly. The maximum spreading diameter has a tendency to increase with the Weber number, and then decrease after the Weber number, beyond 2.7. Approximately, the critical Weber number is about 5, when the droplet lifts off the surface. Considering the effect of apex angle, the maximum normalized spreading diameter has a rough expression as β ∼ α τ


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


Introduction .—In nearly all the previous determinations of the ratio of the specific heats of gases, from measurements of the pressures and temperature before and after an adiabatic expansion, large expansion chambers of fror 50 to 130 litres capacity have been used. Professor Callendar first suggests the use of smaller vessels, and in 1914, Mercer (‘Proc. Phys. Soc.,’ vol. 26 p. 155) made some measurements with several gases, but at room temperature only, using volumes of about 300 and 2000 c. c. respectively. He obtained values which indicated that small vessels could be used, and that, with proper corrections, a considerable degree of accuracy might be obtained. The one other experimenter who has used a small expansion chamber, capacity about 1 litre, is M. C. Shields (‘Phys. Rev.,’ 1917), who measured this ratio for air and for hydrogen at room temperature, about 18° C., and its value for hydroger at — 190° C. The chief advantage gained by the use of large expansion chambers is that no correction, or at the most, a very small one, has to be made for any systematic error due to the size of the containing vessels, but it is clear that, in the determinations of the ratio of the specific heats of gases at low temperatures, the use of small vessels becomes a practical necessity in order that uniform and steady temperature conditions may be obtained. Owing, however, to the presence of a systematic error depending upon the dimensions of the expansion chamber, the magnitude of which had not been definitely settled by experiment, the following work was undertaken with the object of investigating the method more fully, especially with regard to it? applicability to the determination of this ratio at low temperatures.


2005 ◽  
Vol 473-474 ◽  
pp. 429-434 ◽  
Author(s):  
Olga Verezub ◽  
György Kaptay ◽  
Tomiharu Matsushita ◽  
Kusuhiro Mukai

Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.


2014 ◽  
Vol 69 (11-12) ◽  
pp. 1229-1236
Author(s):  
Matthias Wörsching ◽  
Constantin Hoch

Abstract Cesium hydroxide, CsOH, was for the first time characterised on the basis of single-crystal data. The structure is isotypic to the one of the room-temperature modification of NaOH and can be derived from the NaCl structure type thus allowing the comparison of all alkali metal hydroxide structures. Raman spectroscopic investigations show the hydroxide anion to behave almost as a free ion as in the gas phase. The X-ray investigations indicate possible H atom positions.


2005 ◽  
Vol 549 (1-2) ◽  
pp. 32-38 ◽  
Author(s):  
Jia-Ming Liu ◽  
Shi-rong Hu ◽  
Zhi-yong Yang ◽  
Xue-Lin Li ◽  
Ping-ping Li ◽  
...  

2021 ◽  
Vol 5 (01) ◽  
pp. 60-66
Author(s):  
Kunjal Shrestha ◽  
Abhishek Dahal

A value-added functional beverage was formulated utilizing unprocessed whey with excellent nutritional qualities and bland flavors; along with banana juice and the required amount of sugar. Five different formulations were prepared with varying proportions of whey, banana juice, and sugar. Sensory analysis was carried out for all five formulations and based on statistical analysis the one which showed the highest value for body, color, flavor, taste, and overall acceptability was selected for further analysis (85% liquid whey and 15% banana juice). The shelf-life of the final product was observed for 30 days at room temperature (25±5°C) and refrigerated temperature (7±1ºC). A significant variation in body, color, flavor, taste, and overall acceptability were observed by varying the composition of whey and banana juice (p<0.05). The beverage was pasteurized at 82.5°C for 20 min and stored at normal (25±5°C) and refrigerated (7±1°C) for 30 days. The effects of storage time and temperature on physicochemical (TSS, pH, acidity) and microbial (TPC, yeast & mold count) properties were evaluated. Out of five formulations, the one selected via sensory analysis had TSS of 12.4°Bx, total solids 14.21%, 0.302% acidity, pH 5.72, 5.087% reducing sugar, 0.53% protein, 0.56% ash, 0.87% crude fiber, 184.43mg potassium (mg/100gm) and 0.912mg vitamin C in 100 ml. The prepared beverage was stored for 30 days under refrigerated and normal conditions, and changes in TSS, pH and acidity were observed: 12.413.3%, 5.72-5.214, 0.32-0.43%, and 12.4-13.8%, 5.72-4.64, 0.32-0.68% respectively. Overall analysis showed that the beverage prepared with 85% liquid whey and 15% banana juice could be stored for 30 days under refrigerated conditions without the addition of preservatives.


2021 ◽  
Vol 9 (11) ◽  
pp. 1253
Author(s):  
Yuriy N. Savchenko ◽  
Georgiy Y. Savchenko ◽  
Yuriy A. Semenov

Cavity flow around a wedge with rounded edges was studied, taking into account the surface tension effect and the Brillouin–Villat criterion of cavity detachment. The liquid compressibility and viscosity were ignored. An analytical solution was obtained in parametric form by applying the integral hodograph method. This method gives the possibility of deriving analytical expressions for complex velocity and for potential, both defined in a parameter plane. An expression for the curvature of the cavity boundary was obtained analytically. By using the dynamic boundary condition on the cavity boundary, an integral equation in the velocity modulus was derived. The particular case of zero surface tension is a special case of the solution. The surface tension effect was computed over a wide range of the Weber number for various degrees of cavitation development. Numerical results are presented for the flow configuration, the drag force coefficient, and the position of cavity detachment. It was found that for each radius of the edges, there exists a critical Weber number, below which the iterative solution process fails to converge, so a steady flow solution cannot be computed. This critical Weber number increases as the radius of the edge decreases. As the edge radius tends to zero, the critical Weber number tends to infinity, or a steady cavity flow cannot be computed at any finite Weber number in the case of sharp wedge edges. This shows some limitations of the model based on the Brillouin–Villat criterion of cavity detachment.


Sign in / Sign up

Export Citation Format

Share Document