scholarly journals Climate and surface mass balance of Mocho Glacier, Chilean Lake District, 40°S

2016 ◽  
Vol 63 (238) ◽  
pp. 218-228 ◽  
Author(s):  
MARIUS SCHAEFER ◽  
JOSE LUIS RODRIGUEZ ◽  
MATTHIAS SCHEITER ◽  
GINO CASASSA

ABSTRACTWe present climate data, direct surface mass balance (SMB) observations and model results for Mocho Glacier in the Chilean Lake District. Mean annual temperature on a nunatak of Mocho Glacier at an elevation of ~2000 m was +2.6°C in 2006–15 and mean annual precipitation in Puerto Fuy (13 km from the glacier, at an elevation of 600 m) was 4000 mm for the same period. High interannual variations in the SMB of Mocho Glacier were observed. A simple SMB model is able to reproduce the observed annual variations in SMB, but fails to predict the steep observed mass-balance gradient. The average of the measured annual glacier mass balances in the four hydrological years 2009/10–2012/13 was −0.90 m w.e. a−1and the average modelled annual glacier mass balance 2006/07–2014/15 was −1.05 m w.e. a−1. The observed distributed ablation shows a clear altitudinal dependency, while accumulation is determined by patterns of snow drift as well. These patterns are only poorly represented in the model and have to be included in order to be able to reproduce a realistic SMB map of the glacier.

2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2018 ◽  
Author(s):  
Caitlyn Florentine ◽  
Joel Harper ◽  
Daniel Fagre ◽  
Johnnie Moore ◽  
Erich Peitzsch

Abstract. Local topographically driven processes such as wind drifting, avalanching, and shading, are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects apart from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological stations. Geodetically derived mass changes between 1950–1960, 1960–2005, and 2005–2014 document average mass loss rates during each period at −0.22±0.12 m w.e. yr−1, −0.18±0.05 m w.e. yr−1, and −0.10±0.03 m w.e. yr−1. A correlation of field-measured mass balance and regional climate variables closely predicts the geodetically measured mass loss from 2005–2014. However, this correlation overestimates glacier mass balance for 1950–1960 by +1.18±0.92 m w.e. yr−1. This suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.


2020 ◽  
Vol 14 (12) ◽  
pp. 4581-4601
Author(s):  
Julián Gelman Constantin ◽  
Lucas Ruiz ◽  
Gustavo Villarosa ◽  
Valeria Outes ◽  
Facundo N. Bajano ◽  
...  

Abstract. The impact of volcanic ash on seasonal snow and glacier mass balance has been much less studied than that of carbonaceous particles and mineral dust. We present here the first field measurements on the Argentinian Andes, combined with snow albedo and glacier mass balance modeling. Measured impurity content (1.1 mg kg−1 to 30 000 mg kg−1) varied abruptly in snow pits and snow and firn cores, due to high surface enrichment during the ablation season and possibly local or regional wind-driven resuspension and redeposition of dust and volcanic ash. In addition, we observed high spatial heterogeneity, due to glacier topography and the prevailing wind direction. Microscopic characterization showed that the major component was ash from recent Calbuco (2015) and Cordón Caulle (2011) volcanic eruptions, with a minor presence of mineral dust and black carbon. We also found a wide range of measured snow albedo (0.26 to 0.81), which reflected mainly the impurity content and the snow and firn grain size (due to aging). We updated the SNow, ICe, and Aerosol Radiation (SNICAR) albedo model to account for the effect of cloudiness on incident radiation spectra, improving the match of modeled and measured values. We also ran sensitivity studies considering the uncertainty in the main measured parameters (impurity content and composition, snow grain size, layer thickness, etc.) to identify the field measurements that should be improved to facilitate the validation of the snow albedo model. Finally, we studied the impact of these albedo reductions on Alerce Glacier using a spatially distributed surface mass balance model. We found a large impact of albedo changes on glacier mass balance, and we estimated that the effect of observed ash concentrations can be as high as a 1.25 m water equivalent decrease in the annual surface mass balance (due to a 34 % increase in the melt during the ablation season).


2018 ◽  
Vol 12 (6) ◽  
pp. 2109-2122 ◽  
Author(s):  
Caitlyn Florentine ◽  
Joel Harper ◽  
Daniel Fagre ◽  
Johnnie Moore ◽  
Erich Peitzsch

Abstract. Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA, using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes during 1950–1960, 1960–2005, and 2005–2014 document average mass change rates during each period at −0.22 ± 0.12, −0.18 ± 0.05, and −0.10 ± 0.03 m w.e. yr−1, respectively. A correlation of field-measured mass balance and regional climate variables closely (i.e., within 0.08 m w.e. yr−1) predicts the geodetically measured mass loss from 2005 to 2014. However, this correlation overestimates glacier mass balance for 1950–1960 by +1.20 ± 0.95 m w.e. yr−1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.


2021 ◽  
Author(s):  
Yongmei Gong ◽  
Irina Rogozhina

Abstract. Western Norway hosts many glacierized drainage basins with complex terrain and local climate. These drainage basins face challenges related to long-term planning of hydropower production and flood risk mitigation under global warming. To enable forward vision of such efforts, bias-corrected outputs from state-of-the-art regional climate models and reanalysis provide climatic forcing for impact simulations. We utilize a distributed, process-based snow evolution model with a daily temporal and 100 m × 100 m spatial resolution to investigate the applicability of different bias-corrected climate forcing data for multidecadal reconstructions of glacier surface mass balance and surface runoff regimes in western Norway. These simulations are driven by climatic forcing from the bias-corrected NORA10 hindcast in 2000–2014, which has been produced specifically for western Norway and treated as a benchmark dataset, as well as ten bias-corrected and uncorrected CORDEX outputs under different Representative Concentration Pathway scenarios in 2000–2020. Downscaled drainage basin-wide air temperature, precipitation and glacier-wide surface mass balance are then validated against observations. The variables mentioned above produced by the benchmark simulation match available observations well. The mean annual surface mass balance of glaciers in most glacierized basins is negative in 2001–2014, and its evolution is mainly correlated with trends in annual snowfall. There is a general negative west to east gradient in seasonal and annual unit area runoff, which peaks between 2005 and 2008 in most drainage basins. Snow meltwater is the largest contributor to both seasonal and annual runoff in all drainage basins except for two of the westernmost ones. Drainage basins with denser glacier coverage turn out to have a later peak runoff discharge date. The correction applied to the CORDEX forcing reversed the cold bias in the original datasets, while the agreement between bias-corrected and observed precipitation rates varies strongly from basin to basin. As a result, simulations driven by bias-corrected CORDEX datasets produce lower annual surface mass balance in the most and least glacierized drainage basins, i.e., Basin 1 and 17, respectively. They all produce more unit area runoff in Basin 1 and less in Basin 17 both seasonally and annually, with only a few exceptions. We conclude that the identified errors will likely be inherited by the results of the future projections, casting doubts on the applicability of bias-corrected CORDEX forcing to directly drive local scale projections and the modeled outputs in developing climate change adaptation strategies.


2012 ◽  
Vol 6 (2) ◽  
pp. 1445-1490 ◽  
Author(s):  
R. H. Giesen ◽  
J. Oerlemans

Abstract. Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a simple surface mass balance model that only requires air temperature and precipitation as input data, to glaciers in different regions. In contrast to other models used in global applications, this model separately calculates the contributions of net solar radiation and the temperature-dependent fluxes to the energy balance. We derive a relation for these temperature-dependent fluxes using automatic weather station (AWS) measurements from glaciers in different climates. With local, hourly input data, the model is well able to simulate the observed seasonal variations in the surface energy and mass balance at the AWS sites. Replacing the hourly local data by monthly gridded climate data removes summer snowfall and winter melt events and hence influences the modelled mass balance most on locations with a small seasonal temperature cycle. Representative values for the multiplication factor and vertical gradient of precipitation are determined by fitting modelled winter mass balance profiles to observations on 80 glaciers in different regions. For 72 of the 80 glaciers, the precipitation provided by the climate data set has to be multiplied with a factor above unity; the median factor is 2.55. The vertical precipitation gradient ranges from negative to positive values, with more positive values for maritime glaciers and a median value of 1.5 mm a−1 m. With calibrated precipitation, the modelled annual mass balance gradient closely resembles the observations on the 80 glaciers, the absolute values are matched by adjusting either the incoming solar radiation, the temperature-dependent flux or the air temperature. The mass balance sensitivity to changes in temperature is particularly sensitive to the chosen calibration method, emphasizing the importance of well-calibrated model parameters. We additionally calculate the mass balance sensitivity to changes in incoming solar radiation, revealing that widely observed variations in irradiance can affect the mass balance by a magnitude comparable to a 1 °C change in temperature or a 10 % change in precipitation.


2020 ◽  
Author(s):  
◽  
Ben Mauri Pelto

My dissertation investigates glacier mass change in the Columbia and Rocky Mountains of British Columbia. In chapter one I discuss the importance of the cryosphere and glaciers, introduce the climate and glaciers of the study region, and outline the objectives and structure of this dissertation. Previous work established the feasibility of geodetic methods to accurately produce winter glacier mass balance and annual glacier mass balance. These studies demonstrate that geodetic surveys can be used to estimate mass balance during the accumulation season or for one glacier over a number of years. In chapter two, I refine these published methods to measure seasonal and annual mass balance for six glaciers within two mountain ranges from 2014–2018. I use synchronous field-based glaciological measurements, airbornelaser scanningsurveys (ALS) and satelliteimagery to quantify seasonal glacier mass change from 2014–2018. Chapter three reports on radar surveys I completed of the study glaciers, adding important observations to the global database of ice thickness. I use these observations and an existing flowline model, driven with observations of surface mass balance and glacier elevation to bias-correct ice thickness estimates for each glacier. Finally, I use the model to estimate ice thickness for all glaciers in the Columbia Basin and estimate total ice volume. Chapter four builds upon previous work which used surface topography, glacier mass balance, ice thickness, and ice velocity data to estimate ice flux at discrete glacier cross-sections. Previous efforts to infer the spatial distribution of mass balance have focused on glacier tongues. I expand upon this method, calculating surface mass balance between flux gates over the entire elevation range of three glaciers, over three years. I derive the altitude-mass balance relation and demonstrate that the relation can be accurately described with high-resolution elevation and ice flux data, and suggest that this method can be expanded for large-scale estimates. Chapter five summarizes the study’s major findings, highlights its limitations and discussed its broader implications. Finally, I make recommendations that will address knowledge gaps, and improve our understanding of changing glacier conditions and ability to model glacier dynamics.


2010 ◽  
Vol 22 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Mingxing Xu ◽  
Ming Yan ◽  
Jiawen Ren ◽  
Songtao Ai ◽  
Jiancheng Kang ◽  
...  

2020 ◽  
pp. 1-10
Author(s):  
Tate G. Meehan ◽  
H. P. Marshall ◽  
John H. Bradford ◽  
Robert L. Hawley ◽  
Thomas B. Overly ◽  
...  

Abstract We present continuous estimates of snow and firn density, layer depth and accumulation from a multi-channel, multi-offset, ground-penetrating radar traverse. Our method uses the electromagnetic velocity, estimated from waveform travel-times measured at common-midpoints between sources and receivers. Previously, common-midpoint radar experiments on ice sheets have been limited to point observations. We completed radar velocity analysis in the upper ~2 m to estimate the surface and average snow density of the Greenland Ice Sheet. We parameterized the Herron and Langway (1980) firn density and age model using the radar-derived snow density, radar-derived surface mass balance (2015–2017) and reanalysis-derived temperature data. We applied structure-oriented filtering to the radar image along constant age horizons and increased the depth at which horizons could be reliably interpreted. We reconstructed the historical instantaneous surface mass balance, which we averaged into annual and multidecadal products along a 78 km traverse for the period 1984–2017. We found good agreement between our physically constrained parameterization and a firn core collected from the dry snow accumulation zone, and gained insights into the spatial correlation of surface snow density.


Sign in / Sign up

Export Citation Format

Share Document