Rice polishings as an alternative to sugar cane molasses as a supplement with urea to low-quality forage diets for ruminants

1993 ◽  
Vol 56 (1) ◽  
pp. 85-92 ◽  
Author(s):  
D. Cardenas Garcia ◽  
C. J. Newbold ◽  
H. Galbraith ◽  
J. H. Topps ◽  
X. B. Chen ◽  
...  

AbstractThe effect of including 14 g urea with either 75 g dry matter (DM) from sugar cane molasses (UM) or Colombian rice polishings (RP) at three levels, 68 (RP1), 137 (RP2) or 203 (RP3) g DM on grass hay DM intake and on rumen fermentation was investigated. An incomplete Latin-square design was used and each experimental period was divided into 12 days for adaptation to each diet followed by 9 days in metabolism cages when all measurements were made using five adult sheep.Pooled mean values for rumen metabolites (five samples per day) were calculated. Rumen pH was not affected by the nature of the supplements. Concentrations of volatile fatty acids (VFA) (UM 92·8, RP1 84·2, RP2 86·4, and RP3 84·0 (s.e.d. 3·4) mmol/l) and lactate (UM 2·0, RP1 1/6, RP2 1/7, RP3 1/8 (s.e.d. 0·014) mmol/l) (UM v. RP, P < 0·05 and P < 0·10 respectively) were lower when RP were given, while concentration of branched and longer chain VFA (26·5, 34·0, 31·1 and 33·5 (s.e.d. 1·6) mmol/mol total VFA, UM v. RP, P < 0·01) and ammonia (98, 131, 141, 137 (s.e.d. 16·1) mg/l, UM v. RP, P < 0·05) were increased. Numbers of rumen protozoa (1·6, 3·2, 2·7, 3·3 (s.e.d. 0·75) × 105 per ml, UM v. RP, P < 0·20) tended to be higher 2 h after feeding when RP rather than UM were given. However, hay DM intake (1050, 960, 960, 880 (s.e.d. 45·3) g/day, UM v. RP, P < 0·05), and microbial protein supply (11·7, 9·3,11·1,10·8 (s.e.d. 0·59) g N per day, UM v. RP, P < 0·05), estimated from urinary purine excretion were reduced by feeding RP instead of UM.At the levels of inclusion tested RP did not increase the efficiency of rumen fermentation and were not as effective a supplement with urea as was molasses for a low-quality forage diet.

2015 ◽  
Vol 153 (6) ◽  
pp. 1135-1145 ◽  
Author(s):  
J. W. ZHOU ◽  
J. D. MI ◽  
A. A. DEGEN ◽  
X. S. GUO ◽  
H. C. WANG ◽  
...  

SUMMARYA comparative study of the effect of dietary nitrogen (N) content [Low: 11·0; Medium-Low (MLow): 16·7; Medium-High (Mhigh): 23·1; High: 29·2 N g/kg dry matter (DM)] on apparent digestibilities, rumen fermentation and N balance was conducted in coarse wool Tibetan sheep and Gansu Alpine fine-wool sheep at Wushaoling in the northeast of the Qinghai-Tibetan Plateau. It was hypothesized that responses would differ between breeds and that responses would favour Tibetan over fine-wool sheep at low N intakes. Eight wethers [four Tibetan sheep and four fine-wool sheep, 20–24 months old; body weight ± standard deviation was 52 ± 3·2 kg] were used in two concurrent 4 × 4 Latin square designs. Dry matter, organic matter, neutral detergent fibre and acid detergent fibre digestibilities were higher in Tibetan than fine-wool sheep when fed the Low, MLow and High N diets while N retention was higher when the animals were fed the Low and MLow N diets. Tibetan sheep had a higher rumen pH than fine-wool sheep; however, total volatile fatty acids were similar between breeds. Molar proportions of acetate were higher but propionate and butyrate lower in Tibetan than fine-wool sheep. In addition, Tibetan sheep had higher concentrations of ruminal free amino acid-N and soluble protein-N than fine-wool sheep. Plasma and saliva urea-N concentrations were higher in Tibetan than fine-wool sheep when supplied with the Low N diet. It was concluded that Tibetan sheep were better able to cope with low N feed than fine-wool sheep because of the higher N retention and higher DM and fibre digestibilities with Low and MLow diets.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 71-71
Author(s):  
Nicole T Briggs ◽  
Bayissa Hatew ◽  
Michael A Steele

Abstract Inorganic sources of trace minerals are commonly supplemented in dairy cow diets; however, there has been an increase in the supplementation of minerals complexed with organic compounds. These organic trace minerals are thought to have greater bioavailability which may enhance rumen fermentation and absorption. The objective of this study was to assess the effects of dietary concentration and source of supplemental trace minerals on serum trace mineral status and rumen fermentation. Six lactating Holstein cows were used in a 6 x 6 Latin square design with a 23-day adaptation and 5-day experimental period. Cows were fed the same basal diet daily except for the difference in source [organic (ORG) versus inorganic (INO)] and concentration (50%, 100%, and 200% based on NRC recommendations) of trace mineral supplemented. During the experimental period feed intake and blood were collected daily. Rumen fluid was collected on the final two days of the experimental period. Data was analyzed with PROC MIXED in SAS 9.4. Dry matter intake (18.1 ± 0.70 kg), serum mineral concentrations (Cu, Mn, Se, and Zn), and rumen pH (6.5 ± 0.64) did not differ among the treatments. However, serum concentration of Co was higher in 200% ORG compared to 50% and 100% INO and 50% ORG. Ruminal concentration of acetate was higher in 50% and 100% ORG compared to 200% ORG. Butyrate ruminal concentration was higher at 50% ORG compared to 200% ORG. Ruminal propionate concentration was higher in 50% INO and 50% ORG compared to 100% INO and 200% ORG. These findings demonstrate serum trace mineral status and ruminal pH are not tightly controlled by the source of trace minerals when supplemented at 50%, 100% and 200% of the NRC recommendations, however rumen fermentation may be affected by the dietary concentration of trace minerals in the diet.


2013 ◽  
Vol 152 (4) ◽  
pp. 675-685 ◽  
Author(s):  
M. WANAPAT ◽  
P. GUNUN ◽  
N. ANANTASOOK ◽  
S. KANG

SUMMARYThe current study was designed to determine the effect of roughage to concentrate ratio (R : C) on rumen pH, fermentation and bacterial population in dairy steers. Four rumen fistulated dairy steers (170±20 kg) were randomly assigned according to a 4×4 Latin square design, in which the steers were fed with four dietary treatments with different R : C ratios of 0·8 : 0·2, 0·6 : 0·4, 0·4 : 0·6 and 0·2 : 0·8, respectively. All animals were kept in individual pens and received feed according to the respective R : C ratios at 0·025 body weight (BW)/d; urea-treated rice straw (prepared using 3·5 kg urea+100 kg water sprayed onto 100 kg of rice straw) was used as a roughage source. The experiment was conducted for four periods of 21 days each. During the first 14 days, feed intake was measured and the animals were then moved to metabolism crates for total urine and faecal collection for 7 days. Total dry matter intake (DMI) was similar among treatments. Energy intake increased as the proportion of concentrate in the diet increased. Apparent digestibilities of dry matter (DM), organic matter (OM) and crude protein (CP) were improved, while neutral detergent fibre (NDF) and acid detergent fibre (ADF) were reduced when the levels of concentrate increased. A decreasing ratio of R : C reduced rumen pH linearly, from 6·4 to 5·9 at 0·2 : 0·8. High levels of concentrate impacted on volatile fatty acids (VFA) molar proportions and decreased acetate (C2) linearly, while propionate (C3) was increased, leading to decreased C2 : C3 ratio. Numbers of protozoa, fungi and proteolytic bacteria were not affected by R : C ratio. Cellulolytic bacteria decreased linearly while amylolytic bacteria increased linearly with 0·60 and 0·80 concentrates. Quantitative polymerase chain reaction (qPCR) based on 16S RNA revealed thatFibrobacter succinogenesnumbers were increased when steers were fed with R : C ratio of 0·8 : 0·2. Conjugated linoleic acid (CLA)-producing bacteria, especially those ofButyrivibrio fibrisolvens, increased linearly with R : C ratios of 0·8 : 0·2 and 0·6 : 0·4, whileMegasphaera elsdenii, a lactate-utilizing bacterium and reported producer oftrans-10,cis-12 CLA increased linearly with R : C ratio of 0·8 : 0·2. In addition, microbial CP synthesis increased quadratically when steers were fed high levels of concentrate. However, the efficiency microbial N synthesis (EMNS) based on OM, truly digested in the rumen, was not affected by different R : C ratios. From the current study, it can be concluded that roughage to concentrate ratio of 0·4 : 0·6 had positive effects for the creation of healthy rumen (rumen pH and ecology), and improved energy intake and rumen fermentation, particularly propionic acid and microbial protein synthesis, in dairy steers fed urea-treated rice straw as a roughage source.


1991 ◽  
Vol 63 (5) ◽  
pp. 443-453
Author(s):  
Pekka Huhtanen

The effects of including yeast culture (Saccharomyces cerevisiae plus growth medium; 5 x 106 organisms/g) on the digestion of dietary constituents in the rumen and total digestive tract were studied in a pair of monozygote twin bulls. The animals were fitted with cannulae in the rumen and in the proximal duodenum. A diet of grass silage, barley and rapeseed meal (445, 445 and 90 g/kg total dry matter (DM)) was fed, with and without addition of 10 g per day of yeast culture (YC), in two treatment sequences. The addition of YC had no effect on the mean values of rumen pH, ammonia N concentration or molar proportions of volatile fatty acids. Also, the postprandial changes in rumen fermentation pattern were similar when the diet did and did not contain the YC supplement. The peak concentration of lactic acid 1 h after feeding tended to be higher in cattle receiving the YC diet (13.9 v 6.0 mmol/l). Apparent digestibility of organic matter (OM) (mean 0.780) and the proportion of OM digestion occurring in the rumen (mean 0.603) were not affected by YC. Likewise, there was no effect on rumen or total digestion of cell wall carbohydrates, and the results for the degradation of hay DM in the rumen and for particle-associated carboxymethylcellulase and xylanase activities indicated that YC had no effect on the rumen environment that could affect fibre digestion. Supplemental yeast did not affect the rate of microbial N synthesis (28.0 and 28.6 g/kg OM apparently digested in the rumen). The results indicate that the addition of YC to the diet is not likely to improve the efficiency of digestion and fermentation in the rumen of cattle given a diet based on grass silage and barley.


Author(s):  
C. J. Newbold ◽  
R. J. Wallace

Tetronasin is an ionophore which improves feed conversion efficiency in ruminants (Bartleet al, 1988). Its nutritional effects are at least partly derived from its influence on nitrogen and energy metabolism in the rumen. The mode of action of tetronasin is therefore similar to monensin and although it is more potent than monensin, it has a similar spectrum of antimicrobial activity (Newboldet al, 1988). The aim of the present study was to compare the effects of the inclusion of tetronasin or monensin in the diet on the rumen fermentation.Three mature sheep weighing approximately 50 kg and fitted with rumen cannulae were fed 1 kg/d of a mixed diet of hay, barley, molasses, fishmeal and vitamins/minerals (500, 299.5, 100, 91 and 9.5 g/kg dry matter respectively) in two equal meals. A control diet (no addition, C), tetronasin (10 ppm in the diet, T) or monensin (33 ppm, M) were compared in a 3 x 3 Latin square. Periods were 28 days long with samples taken on two consecutive days during the last 5 days. Samples of rumen fluid were withdrawn at 0, 1, 2, 4 and 6 h after the morning feed for the determination of pH, volatile fatty acids (VFA) L-lactic acid and ammonia concentrations.


1994 ◽  
Vol 122 (1) ◽  
pp. 145-150 ◽  
Author(s):  
P. A. Martin ◽  
D. G. Chamberlain ◽  
S. Robertson ◽  
D. Hirst

SUMMARYIn each of two experiments, eight silages supplemented with concentrates containing a high proportion of either starch or digestible fibre were given to rumen-cannulated sheep. The silages constituted c. 65% of the total dry matter and differed widely in chemical composition, reflecting differences in the extent of fermentation in the silo.Rumen pH was lower (P < 0·01 and P < 0·001 for Expts 1 and 2 respectively) and the concentration of total volatile fatty acids (VFA) in the rumen was higher (P < 0·001 for Expt 2) for the starchy concentrate. Silages differed in their effects on ruminal proportions of acetate (P < 0·001 and P < 0·01 for Expts 1 and 2 respectively) and, inversely, of propionate (P < 0·001 for Expt 1). There was evidence of a strong relationship between the molar proportion of propionate in the rumen and the concentration of lactic acid in the silage. The results indicate that the production of propionate during the metabolism of silage lactic acid by the rumen microbial population was the predominant influence on rumen fermentation pattern.It is suggested that this relationship is the basis of some of the differences in milk production reported for silages showing restricted as opposed to extensive fermentation.


1994 ◽  
Vol 59 (2) ◽  
pp. 217-222 ◽  
Author(s):  
M. D. Carro ◽  
A. R. Mantecón ◽  
I. A. Wright ◽  
I. J. Gordon

AbstractEffects of time of supplementation on forage intake, nutrient apparent digestibility and rumen fermentation were studied with 12 mature castrated male sheep (wethers) offered grass hay from 16.30 h to 09.30 h and supplemented with a cereal-based concentrate given at either 09.30 or 16.00 h. Voluntary intake of hay organic matter (OM) was decreased by feeding the concentrate (P< 0·01). Offering concentrate at 09.30 h after hay was available, increased intake of hay and total OM compared with offering it at 16.00 h before hay was available (P< 0·05). Daily pattern of hay intake was not changed when concentrate was offered at 09.30 h compared with feeding hay alone, but concentrate given at 16.00 h resulted in a lower hay intake between 16.30 and 18.00 h. Sheep offered concentrate at 09.30 h had higher rumen ammonia levels than those offered concentrate at 16.00 h, but there were no differences in the apparent digestibility of the nutrients, rumen pH and molar proportions of the main volatile fatty acids. There were also no differences between groups in the blood plasma concentrations of 3-hydroxybutyrate (30HB), nonesterified fatty acids (NEFA) and glucose. It is concluded that feeding supplement after rather than before a period of intake of forage or a bout of grazing may offer a means of minimizing reduction of forage intake as a consequence of feeding concentrate.


2018 ◽  
Vol 39 (6) ◽  
pp. 2621
Author(s):  
Ludmila Couto Gomes ◽  
Claudete Regina Alcalde ◽  
Julio Cesar Damasceno ◽  
Luiz Paulo Rigolon ◽  
Ana Paula Silva Possamai ◽  
...  

Feeding goats with calcium salts of fatty acids (CSFA) can supply ruminants with lipids, with minimal effects on ruminal fermentation and fiber digestibility. However, there is a shortage of information on the effect of CSFA on characteristics of rumen fermentation in grassland goats. Thus, the present study aimed to assess the addition of CSFA to concentrate on the parameters of rumen fermentation of grazing goats. Five rumen cannulated goats were distributed in a Latin square 5x5 design (treatments: 0%, 1.5%, 3.0%, 4.5% and 6.0% CSFA. The pH, ammonia N and volatile fatty acids (VFA) content were analyzed in the ruminal fluid at 0, 2, 4, 6 and 8 hours after concentrate supplementation. The pH and ammonia N concentration showed a linear effect with the addition of CSFA. There was no effect observed for the VFA molar concentration after grazing goats were fed with the experimental diet. In conclusion, further research is needed to investigate the addition of CSFA to goat diets because there is evidence that CSFA increases ruminal pH and decreases excess ruminal ammonia without changing the VFA concentration in the rumen fluid.


2020 ◽  
Vol 33 (5) ◽  
pp. 763-769
Author(s):  
Thiwakorn Ampapon ◽  
Metha Wanapat

Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle.Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice.Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered.Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.


2021 ◽  
pp. 1158-1164
Author(s):  
Anuthida Seankamsorn ◽  
Anusorn Cherdthong ◽  
Sarong So ◽  
Metha Wanapat

Background and Aim: Crude glycerin is changed to propionate in the rumen, while chitosan can be used as a feed supplement to increase propionic acid concentration and decrease methane (CH4) production. We hypothesized that supplementation with a combination of a high level of crude glycerin with chitosan could have a beneficial effect on ruminal fermentation and mitigate CH4 production. This study aimed to explore the combined effects of crude glycerin and chitosan supplementation on nutrient digestibility, rumen fermentation, and CH4 calculation in native Thai bulls. Materials and Methods: Four 2-year-old native Thai bulls, weighing 150±20 kg, were kept in a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A represented the incorporation of crude glycerin at 10.5% and 21% of the dry matter (DM) of a total mixed ration (TMR), and factor B represented the supplementation of chitosan at 1% and 2% DM of a TMR. Results: Increasing levels of crude glycerin at 21% decreased DM intake by 0.62 kg/day compared with 10.5% crude glycerin (p<0.05), whereas nutrient digestibility did not change (p>0.05). The incorporated crude glycerin and supplemented chitosan levels did not affect the pH, temperature, concentrations of ammonia-nitrogen, microbial population, and blood urea nitrogen (p>0.05). Supplemented chitosan and incorporated crude glycerin did not show any interaction effects on the molar portions and total volatile fatty acids (VFAs), except estimated CH4. Increasing the incorporated crude glycerin levels increased propionate and decreased the ratio of acetate to propionate ratio, whereas levels of butyrate, acetate, and total VFAs were unchanged. The combination of crude glycerin at 21% in the TMR with chitosan at 2% reduced CH4 estimation by 5.08% compared with the other feed treatment. Conclusion: Increasing incorporated crude glycerin levels in a TMR significantly elevated the propionate concentration, whereas combining 21% crude glycerin in the TMR diet with 2% chitosan supplementation could depress CH4 estimation more effectively than adding one of these supplements alone.


Sign in / Sign up

Export Citation Format

Share Document