Radiocarbon and the date of the Thera eruption

Antiquity ◽  
2014 ◽  
Vol 88 (339) ◽  
pp. 277-282 ◽  
Author(s):  
Manfred Bietak

The criticism of the date of the olive tree branch from Thera offered by Cherubini et al. (above) has to be fully supported. The attribution of the branch in question to the late part of the seventeenth century BC is by itself not unexpected, as most of the other radiocarbon dates of short-lived samples from the site of Akrotiri fall into the second half of that century. The attempt to produce a wiggle-match drawn from a succession of non-existent tree-rings in this branch, and to fit such a result into the general calibration curve to give the illusion of precision, however, does not pass the scientific test. Olive trees do not develop annual tree-rings. Furthermore, no proof could be produced that this branch was alive during the eruption. The olive leaves found in an underlying horizon had no connection to the branch and could have been preserved in dry ground like this for ages before the eruption occurred. The remains of the branch were not found in a tight-fitting context but in a much larger cavity and it seems that the outer part of the branch, including the bark edge (waney edge)—contrary to the assertions of Friedrich et al. (2006)—are missing. The other issue in this scientific discussion is that dating the Thera eruption by 14C is much more problematic than is acknowledged by scientists, since it clashes distinctly with historical and archaeological dating.

Antiquity ◽  
2014 ◽  
Vol 88 (339) ◽  
pp. 288-289 ◽  
Author(s):  
J. Alexander MacGillivray

Paolo Cherubini and colleagues have demonstrated convincingly that the identification of olive wood tree-rings from Santorini is ‘practically impossible’. Thus, the single piece of evidence that might have persuaded some archaeologists to support the ‘high’ 1613±13 BC date for the Theran eruption is hors de combat. The Theran olive-tree branch has gone the way of the Greenland Ice Core results of similar date and which enjoyed a similar devoted following until shown to be from a different eruption. Taken with Malcolm Wiener's explicit exposé of the myriad shortcomings of 14C dating, especially for this time period and event, these results take us back to where we were before the ‘radiocarbon revolution‘, when the largest Holocene eruption in the ancient world happened as Minoan Crete enjoyed wideranging influence, perhaps even control, over the Aegean, when Late Minoan IA pottery styles proliferated, and Egypt was in the early stages of its New Kingdom period (Wiener 2012, 2013).


2013 ◽  
Vol 3 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Wendy Babcox

Every Olive Tree in the Garden of Gethsemane is a suite of photographic images of each of the twenty-three olive trees in the garden. Situated at the foot of the Mount of Olives in Jerusalem, the Garden of Gethsemane is known to many as the site where Jesus and his disciples prayed the night before his crucifixion. The oldest trees in the garden date to 1092 and are recognized as some of the oldest olive trees in existence. The older trees are a living and symbolic connection to the distant past, while younger trees serve as a link to the future. The gnarled trunks seem written with the many conflicts that have been waged in an effort to control this most-contested city; a city constantly on the threshold of radical transformation.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


Radiocarbon ◽  
2020 ◽  
pp. 1-13
Author(s):  
Alexandra Fogtmann-Schulz ◽  
Sabrina G K Kudsk ◽  
Florian Adolphi ◽  
Christoffer Karoff ◽  
Mads F Knudsen ◽  
...  

ABSTRACT We here present a comparison of methods for the pretreatment of a batch of tree rings for high-precision measurement of radiocarbon at the Aarhus AMS Centre (AARAMS), Aarhus University, Denmark. The aim was to develop an efficient and high-throughput method able to pretreat ca. 50 samples at a time. We tested two methods for extracting α-cellulose from wood to find the most optimal for our use. One method used acetic acid, the other used HCl acid for the delignification. The testing was conducted on background 14C samples, in order to assess the effect of the different pretreatment methods on low-activity samples. Furthermore, the extracted wood and cellulose fractions were analyzed using Fourier transform infrared (FTIR) spectroscopy, which showed a successful extraction of α-cellulose from the samples. Cellulose samples were pretreated at AARAMS, and the graphitization and radiocarbon analysis of these samples were done at both AARAMS and the radiocarbon dating laboratory at Lund University to compare the graphitization and AMS machine performance. No significant offset was found between the two sets of measurements. Based on these tests, the pretreatment of tree rings for high-precision radiocarbon analysis at AARAMS will henceforth use HCI for the delignification.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1304
Author(s):  
Francisco Espínola ◽  
Alfonso M. Vidal ◽  
Juan M. Espínola ◽  
Manuel Moya

Wild olive trees have important potential, but, to date, the oil from wild olives has not been studied significantly, especially from an analytical point of view. In Spain, the wild olive tree is called “Acebuche” and its fruit “Acebuchina”. The objective of this work is to optimize the olive oil production process from the Acebuchina cultivar and characterize the oil, which could be marketed as healthy and functional food. A Box–Behnken experimental design with five central points was used, along with the Response Surface Methodology to obtain a mathematical experimental model. The oils from the Acebuchina cultivar meet the requirements for human consumption and have a good balance of fatty acids. In addition, the oils are rich in antioxidants and volatile compounds. The highest extraction yield, 12.0 g oil/100 g paste, was obtained at 90.0 min and the highest yield of phenolic compounds, 870.0 mg/kg, was achieved at 40.0 °C, and 90.0 min; but the maximum content of volatile compounds, 26.9 mg/kg, was obtained at 20 °C and 30.0 min. The oil yield is lower than that of commercial cultivars, but the contents of volatile and phenolic compounds is higher.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Sebastian Aniţa ◽  
Vincenzo Capasso ◽  
Simone Scacchi

AbstractIn a recent paper by one of the authors and collaborators, motivated by the Olive Quick Decline Syndrome (OQDS) outbreak, which has been ongoing in Southern Italy since 2013, a simple epidemiological model describing this epidemic was presented. Beside the bacterium Xylella fastidiosa, the main players considered in the model are its insect vectors, Philaenus spumarius, and the host plants (olive trees and weeds) of the insects and of the bacterium. The model was based on a system of ordinary differential equations, the analysis of which provided interesting results about possible equilibria of the epidemic system and guidelines for its numerical simulations. Although the model presented there was mathematically rather simplified, its analysis has highlighted threshold parameters that could be the target of control strategies within an integrated pest management framework, not requiring the removal of the productive resource represented by the olive trees. Indeed, numerical simulations support the outcomes of the mathematical analysis, according to which the removal of a suitable amount of weed biomass (reservoir of Xylella fastidiosa) from olive orchards and surrounding areas resulted in the most efficient strategy to control the spread of the OQDS. In addition, as expected, the adoption of more resistant olive tree cultivars has been shown to be a good strategy, though less cost-effective, in controlling the pathogen. In this paper for a more realistic description and a clearer interpretation of the proposed control measures, a spatial structure of the epidemic system has been included, but, in order to keep mathematical technicalities to a minimum, only two players have been described in a dynamical way, trees and insects, while the weed biomass is taken to be a given quantity. The control measures have been introduced only on a subregion of the whole habitat, in order to contain costs of intervention. We show that such a practice can lead to the eradication of an epidemic outbreak. Numerical simulations confirm both the results of the previous paper and the theoretical results of the model with a spatial structure, though subject to regional control only.


Plant Disease ◽  
1997 ◽  
Vol 81 (10) ◽  
pp. 1216-1216 ◽  
Author(s):  
M. E. Sánchez-Hernández ◽  
A. Ruiz-Dávila ◽  
A. Trapero-Casas

Several species of the genus Phytophthora are associated with root rot and trunk cankers in olive trees (Olea europaea L.). Among them, Phytophthora megasperma has been cited as being associated with olive root rots in Greece (1). Unidentified species of Pythium and Phytophthora have also been associated with olive tree root rots in the United States. However, the status of P. megasperma and Pythium spp. as olive tree root pathogens has remained unclear. Following a 5-year period of severe drought in southern Spain, autumn-winter rainfall rates in 1996 to 1997 steadily increased in both quantity and frequency. Under these unusually wet conditions, olive trees remained waterlogged for several months. During this period, we observed foliar wilting, dieback, and death of young trees, and later found extensive root necrosis. In 46 of 49 affected plantations surveyed, P. megasperma was consistently isolated from the rotted rootlets, particularly in young (<1- to 10-year-old trees) plantations. This fungus was not detected on plant material affected by damping-off from several Spanish olive tree nurseries. The opposite situation occurred with P. irregulare. This species was not associated with rotted rootlets in the field. In contrast, it was consistently isolated from necrotic rootlets from young olive plants affected by damping-off. These plants were grown in a sand-lime-peat soil mixture under greenhouse conditions and showed foliar wilting and extensive necrosis of the root systems. Pathogenicity tests were conducted with several isolates of P. megasperma and P. irregulare on 6-month-old rooted cuttings of olive, under both weekly watering and waterlogged conditions. Under waterlogged conditions, both fungal species produced extensive root necrosis 2 weeks after inoculation that resulted in wilting of the aerial parts and rapid plant death. Waterlogged control plants remained without foliar symptoms but a low degree of root necrosis was recorded. In addition, under weekly watering conditions, plants inoculated with either species showed some degree of root rot but foliar symptoms were not evident. No differences in pathogenicity were observed within the Phytophthora or Pythium isolates. Reference: (1) H. Kouyeas and A. Chitzanidis. Ann. Inst. Phytopathol. Benaki 8:175, 1968.


2019 ◽  
Vol 9 (2) ◽  
pp. 64-71
Author(s):  
Benyoub Kheira ◽  
Kacem Mourad ◽  
Kaid-Harche Meriem

The present study on olive tuberculosis commenced by isolating bacteria of the genus Pseudomonas from the soils and necrosis of collected olive trees. A total of 180 samples were used in this study: (100) rhizospheric soil samples: (60) samples at the region of Ain Témouchent and (40) at the region of Sig in western of Algeria. In total, (80) galls were collected (40) at branch level and (40) galls at olive tree leaf (level). The isolates were identified by microbiological (macroscopic and microscopic examination), physiological (growth in the presence of Salt (NaCl), growth at different pH values and growth at different temperatures) and biochemical methods (the LOPAT and Galeries Api 20 NE test to identify species of the Pseudomonas group and conventional biochemical tests to identify the subspecies P. syringae pv. Savastanoi).This allowed to identify 110 isolates of Pseudomonas (60 isolates of P. aeruginosa, 35 isolates of P. fluorescens and 15 isolates of P. syringae pv Savastanoi the causal agent of olive node disease) which are now part of the collection of Pseudomonas bacteria of the laboratory of the Biotechnology Department (USTO-MB). The selection of technological performance isolates useful for our agriculture could solve phytopathological problems and finally constitute a collection of the bacteria preserved.


Radiocarbon ◽  
1983 ◽  
Vol 25 (2) ◽  
pp. 639-644 ◽  
Author(s):  
H T Waterbolk

In the past 30 years many hundreds of archaeologic samples have been dated by radiocarbon laboratories. Yet, one cannot say that 14C dating is fully integrated into archaeology. For many archaeologists, a 14C date is an outside expertise, for which they are grateful, when it provides the answer to an otherwise insoluble chronologic problem and when it falls within the expected time range. But if a 14C date contradicts other chronologic evidence, they often find the ‘solution’ inexplicable. Some archaeologists are so impressed by the new method, that they neglect the other evidence; others simply reject problematic 14C dates as archaeologically unacceptable. Frequently, excavation reports are provided with an appendix listing the relevant 14C dates with little or no discussion of their implication. It is rare, indeed, to see in archaeologic reports a careful weighing of the various types of chronologic evidence. Yet, this is precisely what the archaeologist is accustomed to do with the evidence from his traditional methods for building up a chronology: typology and stratigraphy. Why should he not be able to include radiocarbon dates in the same way in his considerations?


2019 ◽  
Vol 20 (1) ◽  
pp. 1-14
Author(s):  
Helder José ◽  
Iasmin Macedo ◽  
Mateus Cruz Loss

The suspended pitfall demonstrates a new and simple mechanism to capture small arboreal and scansorial mammals. It is an arboreal version of the pitfalls traditionally used to capture terrestrial amphibians and reptiles. Buckets with bait inside are raised by a rope until they reach a tree branch at the desired height. Tests were performed in the Atlantic Forest at three different sites at the mouth of Doce River in Linhares, southeastern Brazil. In one of them suspended pitfalls were set up in the understory of a shaded cacao plantation (cabruca agroforest) in the branches of cacao trees between 2 and 3 m in height, and in the other they were placed in a native forest between 5 to 15 m in height. At the third site, suspended pitfalls were tested together with the other live traps used hitherto in the understory of other cabruca agroforest. The marsupials Didelphis aurita, Caluromys philander, Marmosa (Micoureus) paraguayana, Gracilinanus microtarsus, Marmosa murina and the rodent Rhipidomys mastacalis were captured by suspended pitfall. This live trap was capable of catching all sizes of small arboreal mammals, including juvenile individuals. This method proved to be functional for the capture of some small arboreal mammals and may be a complementary alternative for sampling in high forest strata.


Sign in / Sign up

Export Citation Format

Share Document