scholarly journals Maternal fatty acid desaturase genotype correlates with infant immune responses at 6 months

2015 ◽  
Vol 114 (6) ◽  
pp. 891-898 ◽  
Author(s):  
Magdalena Muc ◽  
Eskil Kreiner-Møller ◽  
Jeppe M. Larsen ◽  
Sune Birch ◽  
Susanne Brix ◽  
...  

AbstractBreast milk long-chain PUFA (LCPUFA) have been associated with changes in early life immune responses and may modulate T-cell function in infancy. We studied the effect of maternal fatty acid desaturase (FADS) genotype and breast milk LCPUFA levels on infants’ blood T-cell profiles and ex vivo-produced cytokines after anti-CD3/CD28 stimulation of peripheral blood mononuclear cells in 6-month-old infants from the Copenhagen Prospective Study of Asthma in Childhood birth cohort. LCPUFA concentrations of breast milk were assessed at 4 weeks of age, and FADS SNP were determined in both mothers and infants (n 109). In general, breast milk arachidonic acid (AA) levels were inversely correlated with the production of IL-10 (r −0·25; P=0·004), IL-17 (r −0·24; P=0·005), IL-5 (r −0·21; P=0·014) and IL-13 (r −0·17; P=0·047), whereas EPA was positively correlated with the counts of blood regulatory T-cells and cytotoxic T-cells and decreased T-helper cell counts. The minor FADS alleles were associated with lower breast milk AA and EPA, and infants of mothers carrying the minor allele of FADS SNP rs174556 had higher production of IL-10 (r −0·23; P=0·018), IL-17 (r −0·25; P=0·009) and IL-5 (r −0·21; P=0·038) from ex vivo-activated immune cells. We observed no association between T-cell distribution and maternal or infant FADS gene variants. We conclude that increased maternal LCPUFA synthesis and breast milk AA are associated with decreased levels of IL-5, IL-13 (type-2 related), IL-17 (type-17 related) and IL-10 (regulatory immune responses), but not with interferon-γ and TNF-α, which could be due to an effect of the maternal FADS variants on the offspring immune response transferred via breast milk LCPUFA.

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Leslie P. Cousens ◽  
Yan Su ◽  
Elizabeth McClaine ◽  
Xin Li ◽  
Frances Terry ◽  
...  

HLA class II-restricted regulatory T cell (Treg) epitopes in IgG (also called “Tregitopes”) have been reported to suppress immune responses to coadministered antigens by stimulating the expansion of natural Tregs (nTregs). Here we evaluate their impact on human immune responses to islet cell antigensex vivoand on the modulation of type 1 diabetes (T1D) in a murine modelin vivo. Co-administration of Tregitopes and T1D antigens delayed development of hyperglycemia and reduced the incidence of diabetes in NOD mice. Suppression of diabetes could be observed even following onset of disease. To measure the impact of Tregitope treatment on T cell responses, we evaluated the effect of Tregitope treatment in DO11.10 mice. Upregulation of FoxP3 in KJ1-26-stained OVA-specific CD4+T cells was observed following treatment of DO11.10 mice with Tregitopes, along with reductions in anti-OVA Ig and T effector responses. Inex vivostudies of human T cells, peripheral blood mononuclear cells’ (PBMC) responses to GAD65 epitopes in the presence and absence of Tregitope were variable. Suppression of immune responses to GAD65 epitopesex vivoby Tregitope appeared to be more effective in assays using PBMC from a newly diagnosed diabetic subject than for other more established diabetic subjects, and correlation of the degree of suppression with predicted HLA restriction of the Tregitopes was confirmed. Implementation of these defined regulatory T cell epitopes for therapy of T1D and other autoimmune diseases may lead to a paradigm shift in disease management.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2613-2613
Author(s):  
Maura L. Gillison ◽  
Mark M. Awad ◽  
Przemyslaw Twardowski ◽  
Ammar Sukari ◽  
Melissa Lynne Johnson ◽  
...  

2613 Background: GEN-009 is an adjuvanted personalized cancer vaccine containing up to 20 neoantigens selected by ATLAS, an ex vivo bioassay screening autologous T cells for immune responses against both neoantigens as well as Inhibigens. Inhibigen-specific T cells suppress immunity and have been shown to accelerate tumor progression in mice and are avoided in GEN-009. In cohort A, all patients immunized in the adjuvant setting with GEN-009 monotherapy developed immune responses. Nearly all (99%) of selected peptides were immunogenic: ex vivo CD4+ and CD8+ fluorospot responses specific for 51% and 41% of immunized peptides, respectively. Seven of 8 patients continue without progression with a median follow up of 18 months. Methods: GEN-009 is being evaluated in patients (pts) with advanced cancer who received standard-of-care (SOC) PD-1 inhibitor as monotherapy or in combination therapy during vaccine manufacturing. Five vaccine doses were administered over 24 weeks in combination with a PD-1 CPI. Patients who progressed prior to vaccination received alternative salvage therapy followed by GEN-009 in combination. Peripheral T cell responses were measured by fluorospot assays in ex vivo and in vitro stimulation. Results: 15 pts received GEN-009 in combination with a PD-1 inhibitor; 1 patient received GEN-009 monotherapy. Median number of neoantigens per vaccine was 14 (5-18). GEN-009-related adverse events were limited to vaccine injection site reactions and mild myalgias or fatigue. Longitudinal evaluation of ex vivo T cell responses revealed that sequential vaccination with GEN-009 had an overall additive effect on the robustness of IFNγ secretion and responses were persistent for at least 6 months in some patients. Epitope spread was detected in CPI sensitive patients, but not in CPI refractory patients receiving salvage therapy. Three patients who responded to PD-1 inhibition followed by disease stabilization then demonstrated further reduction after GEN-009 vaccination that could represent vaccine effect. Eight of 9 CPI responsive patients are progression-free from 3 to 10 months after first vaccine dose. Four of 7 CPI refractory patients have experienced unexpected prolonged stable disease after vaccination of up to 8 months after vaccination. 2 of 2 patients with available samples lost all evidence of circulating tumor DNA including non-targeted neoantigens. Conclusions: Vaccination with GEN-009 in combination with anti-PD-1 CPI in patients with advanced solid tumors shows little additive toxicity. Preliminary data demonstrate induction of broad neoantigen-specific immune responses and epitope spreading in the presence of PD-1 CPI. Broad immunity against tumor specific targets and encouraging patient outcomes support further study. Clinical trial information: NCT03633110.


Blood ◽  
2021 ◽  
Author(s):  
Maissa Mhibik ◽  
Erika M. Gaglione ◽  
David Eik ◽  
Ellen K Kendall ◽  
Amy Blackburn ◽  
...  

Bruton Tyrosine Kinase inhibitors (BTKis) are a preferred treatment for patients with chronic lymphocytic leukemia (CLL). Indefinite therapy with BTKis, while effective, presents clinical challenges. Combination therapy can deepen responses, shorten treatment duration, and possibly prevent or overcome drug resistance. We previously reported on a CD19/CD3 bispecific antibody (bsAb) that recruits autologous T cell cytotoxicity against CLL cells in vitro. Compared to observations with samples from treatment-naïve patients, T cells from patients being treated with ibrutinib expanded more rapidly and exerted superior cytotoxic activity in response to the bsAb. In addition to BTK, ibrutinib also inhibits IL2 inducible T cell Kinase (ITK). In contrast, acalabrutinib, does not inhibit ITK. Whether ITK inhibition contributes to the observed immune effects is unknown. To better understand how BTKis modulate T-cell function and cytotoxic activity, we cultured peripheral blood mononuclear cells (PBMCs) from BTKi-naive, and ibrutinib- or acalabrutinib-treated CLL patients with CD19/CD3 bsAb in vitro. T-cell expansion, activation, differentiation, and cytotoxicity were increased in PBMCs from patients on treatment with either BTKi compared to that observed for BKTi-naïve patients. BTKi therapy transcriptionally downregulated immunosuppressive effectors expressed by CLL cells, including CTLA-4 and CD200. CTLA-4 blockade with ipilimumab in vitro increased the cytotoxic activity of the bsAb in BTKi-naïve but not BTKi-treated PBMCS. Taken together, BTKis enhance bsAb induced cytotoxicity by relieving T cells of immunosuppressive restraints imposed by CLL cells. The benefit of combining bsAb immunotherapy with BTKis needs to be confirmed in clinical trials.


2013 ◽  
Vol 20 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Y Zhang ◽  
M McClellan ◽  
L Efros ◽  
D Shi ◽  
B Bielekova ◽  
...  

Daclizumab is a humanized monoclonal antibody that prevents interleukin-2 (IL-2) binding to CD25, blocking IL-2 signaling by cells that require high-affinity IL-2 receptors to mediate IL-2 signaling. The phase 2a CHOICE study evaluating daclizumab as a treatment for multiple sclerosis (MS) included longitudinal analysis of activated T cell counts. Whereas an exposure-dependent relationship was observed between daclizumab and reductions in HLA-DR+-activated T cells, a similar relationship was not observed for reductions in CD25 levels. The objective of this report is to determine the mechanism by which daclizumab reduces CD25 levels on peripheral blood mononuclear cells (PBMCs) using cytometric techniques. Daclizumab reduced T cell CD25 levels through a mechanism that required the daclizumab-Fc domain interaction with Fc receptors (FcR) on monocytes, but not on natural killer (NK) cells, and was unrelated to internalization or cell killing. Activated CD4+ T cells and FoxP3+ Treg cells showed evidence of trogocytosis of the CD25 antigen in the presence of monocytes. A daclizumab variant that retained affinity for CD25 but lacked FcR binding did not induce trogocytosis and was significantly less potent as an inhibitor of IL-2-induced proliferation of PBMCs. In conclusion, Daclizumab-induced monocyte-mediated trogocytosis of CD25 from T cells appears to be an additional mechanism contributing to daclizumab inhibition of IL-2 signaling.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2410-2410
Author(s):  
James R. Berenson ◽  
Ivan M. Borrello ◽  
Ravi Vij ◽  
Asad Bashey ◽  
Thomas Martin ◽  
...  

Abstract Background: T cells from myeloma subjects can be activated and expanded ex vivo using the Xcellerate™ Process, in which peripheral blood mononuclear cells are incubated with anti-CD3 and anti-CD28 antibody-coated magnetic beads (Xcyte™-Dynabeads®). In a previous study (Borrello et al., ASCO 2004), Xcellerated T Cells administered to myeloma subjects following high dose chemotherapy and autologous stem cell transplantation led to accelerated lymphocyte recovery and restoration of the T cell receptor repertoire. In the current study, subjects with relapsed or refractory myeloma were randomized to Xcellerated T Cells with or without one cycle of fludarabine prior to Xcellerated T Cells. Fludarabine is being used to assess the influence of lymphoablation on the anti-tumor and immune reconstitution effects of T cell therapy; it has previously been reported to have no significant activty in myeloma (Kraut et al., Invest. New Drugs, 1990). Methods: Approximately 30 subjects are planned to receive treatment. Each receives a single dose of 60–100 x 109 Xcellerated T Cells. Subjects on the fludarabine arm receive a single cycle (5 days at 25 mg/m2), completed 4 days prior to the Xcellerated T Cell infusion. Results: 17 subjects have been enrolled and 13 treated to date, with median last f/u visit of 28 days (range 0–140). Xcellerated T Cells were successfully manufactured in all subjects, with T cell expansion 136 ± 61 fold (mean ± SD), with 79.2 ± 13.8 x 109 cells infused, and final product 98.0 ± 2.0% T cells (n=13). There have been no reported serious adverse events related to Xcellerated T Cells. In the fludarabine arm, lymphocytes decreased from 1,228 ± 290/mm3 (mean ± SEM) to 402 ± 164 following fludarabine, and then increased to 1,772 ± 278 on Day 14 following T cell infusion (n=7). In the non-fludarabine arm, lymphocyte counts increased from 1,186 ± 252 to 3,204 ± 545 on Day 14 (n=4). Lymphocytes were comprised of both CD4+ and CD8+ T cells. Increases were observed in NK cells from 77 ± 26 to 121 ± 25, monocytes from 166 ± 44 to 220 ± 30 and platelets from 218 ± 16 to 235 ± 24 by Day 14 (n=11). In the non-fludarabine arm, neutrophils increased from 3.6 ± 0.9 to 4.8 ± 0.6 on Day 1. On the fludarabine arm, 3 of 6 subjects developed Grade 4 neutropenia and one developed Grade 3 thrombocytopenia. Seven subjects were evaluable for serum M-protein measurements to Day 28. One of three fludarabine treated subjects had an M-protein decrease of 38%. Conclusions: Xcellerated T Cells were well-tolerated and led to increased lymphocytes, including T cells and NK cells. Increases in other hematologic parameters, including neutrophils and platelets were also observed. In this patient population, fludarabine is lymphoablative and also can cause neutropenia and thrombocytopenia. The fludarabine schedule has been decreased from 5 to 3 days. A decrease in M-protein has been observed in one of three fludarabine-treated subjects; data on additional subjects will be presented.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2390-2390
Author(s):  
David Peritt ◽  
Kim Campbell ◽  
Amy Krutsick ◽  
Janine Huber ◽  
Ulrich Thienel ◽  
...  

Abstract Extracorporeal photopheresis (ECP) is approved for the palliative treatment of skin manifestations associated with cutaneous T cell lymphoma. As reported in the literature, ECP has shown promise as a treatment for such immune-mediated inflammatory disorders as graft versus host disease, transplantation rejection, and autoimmune diseases. ECP involves the reinfusion of autologous, apoptotic peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen (8-MOP) and UVA light. The biological mechanism of action of ECP, however, remains unresolved. We have evidence to suggest that delivery of ECP-treated apoptotic cells modulates immune responses, possibly through generation of regulatory T cells. When co-incubated with ECP-treated cells, activated dendritic cells produce reduced levels of proinflammatory cytokines, such as IL-12, while TGFβ levels were modestly increased. Activation of CD4+ T cells in the presence of allogeneic dendritic cells and ECP-treated cells promotes generation of a population of T cells that can suppress proliferation of, and IFNγ production by, naïve syngeneic T cells. To confirm these findings in vivo, we employed a murine contact hypersensitivity model. ECP-treated or control spleen and lymph node cells from mice sensitized with the hapten dinitrofluorobenzene (DNFB) were injected intravenously into naïve recipients. Compared to controls, mice that received ECP-treated cells demonstrated significantly less ear swelling following sensitization and challenge with DNFB. Suppression of ear swelling was specific for DNFB and cell-mediated, as demonstrated by the ability to transfer DNFB tolerance to naïve mice, which could appropriately respond to the unrelated hapten oxazalone. Transfer of this tolerance was abrogated by depletion of either CD4+ or CD25+ T cell populations. Collectively, these results suggest that delivery of ECP-treated cells promotes the generation of regulatory T cells that are capable of modulating immune responses. Therakos sponsored Phase II trials for the prevention and treatment of GvHD are concluding and an international blinded pivotal phase III study is planned for 2005.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2203-2203
Author(s):  
Sandeep Chunduri ◽  
Dolores Mahmud ◽  
Javaneh Abbasian ◽  
Damiano Rondelli

Abstract Transplantation of HLA-mismatched cord blood (CB) nucleated cells has limited risk of severe acute graft-versus-host disease and graft rejection. This may depend on naïve T cells not yet exposed to many antigens and on immature antigen-presenting cells (APC) not delivering appropriate signals to allogeneic T cells. In order to test the APC activity of human circulating CB cells in-vitro, we initially used irradiated CB mononuclear cells (MNC) or immunomagnetically selected CD34+ cells, CD133+ cells, or CD14+ monocytes to stimulate the proliferative response of incompatible blood T cells in mixed leukocyte culture (MLC). CB MNC failed to induce allogeneic T cell proliferation, while CD34+ and CD133+ progenitors or CD14+ monocytes induced potent T cell alloresponses. Nevertheless, since allogeneic T cell response was not restored after depletion of CD3+ cells in the CB, nor the add-back of irradiated CB MNC to CD34+ or CD14+ stimulators inhibited allo-T cells, a direct suppressive effect of CB MNC was excluded. Allogeneic peripheral blood cytotoxic T-lymphocyte (CTL) responses were not induced after 7 days of stimulation with irradiated CB MNC, although after 4 weekly rechallenges with CB MNC, on average a 23% lysis of antigen-specific CB PHA-blasts was observed at the highest effector:target ratio (50:1). To test the tolerogenic potential of CB MNC, T cells initially exposed to CB MNC were rechallenged in secondary MLC with CB MNC, or CD34+ cells, or monocyte-derived dendritic cells (Mo-DC) generated in liquid culture with GM-CSF and IL-4. Allogeneic T cells were still unresponsive upon rechallenge with CB MNC, but proliferated upon 3 days of restimulation with CD34+ cells or Mo-DC from the same CB. Surprisingly, the supernatant of these latter MLCs did inhibit completely a 3rd party MLC. Instead, the supernatant of blood T cells that had been activated by CB CD34+ cells or Mo-DC both in primary and secondary MLC did not. These results show an impaired allo-APC activity of CB MNC but not CB CD34+ cells, and suggest that T cells releasing immunosuppressive cytokines may be activated by CB MNC and then expanded by a second more potent stimulation with professional APC. This hypothesis could explain the sustained engraftment of HLA-mismatched CB stem cell transplants in humans. Based on these results, the in-vivo or ex-vivo downregulation of T cell alloreactivity induced by CB MNC will be tested in experimental models of stem cell, as well as solid organ transplantation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 599-599 ◽  
Author(s):  
Eva C. Guinan ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Lee M. Nadler

Abstract Poor and delayed immune reconstitution remains a major stumbling block to successful SCT especially when alternative donors are used. Strategies to selectively remove or inactivate alloreactive cells while leaving the other donor T cell repertoire intact might address this problem. A functional T cell response requires an antigen (Ag)-specific MHC-restricted signal (signal 1) to the T cell receptor (TCR) by an Ag presenting cell (APC) as well as a second, Ag independent costimulatory signal (signal 2) provided in large part by B7 family members on APC to CD28 on T cells. Without signal 2, T cells develop tolerance to the specific Ag. Costimulation can be blocked by either CTLA4-Ig, a fusion of Ig with human CTLA4 (the T cell high affinity B7 ligand) or a combination of humanized IgG2 isotype mutated monoclonal antibodies to the APC molecules B7-1 and B7-2. In 2 pilot studies of patients (pts) undergoing haploidentical SCT, donor T cell replete BM was incubated ex vivo with recipient irradiated peripheral blood mononuclear cells with CTLA4-Ig (pilot 1) or anti-B7-1+anti-B7-2 (pilot 2) to induce alloAg specific tolerance. 19 pts age 7 mos-50 yrs (median 15 yrs) were enrolled on pilot 1 and 5 aged 4–12 (median 6) on pilot 2. 3 pts had congenital BM failure. 21 pts with malignancy, ALL (11), AML(7), NHL(2), MDS(1), were >CR1and 14/21 had progressive disease (PD). Pts received TBI based ablative conditioning. Pts received a median of 3.3x106/kg CD34+ cells (0.5–12.3) containing a median of 2.8x 107/kg CD3+ (0.7–6.8), 1.6x 107/kg CD4+ (0.4–4.1), and 1x107/kg CD8+ (0.2–3.7) T cells. One pt got additional anergized cells for slow recovery and engrafted fully. One AML pt had autologous persistence and graft failure (GF). Evaluable pts engrafted at median 21 d (range, 13–29) with full donor chimerism. Of the 21 evaluable pts, 9 (43%) had findings consistent with acute GVHD graded B (n=4), C (n=4) and D (n=1) despite inconsistent pathology. GVHD symptoms were largely isolated to the GI tract and resolved with observation or moderate steroids. No death was attributable to GVHD. 11 pts died early of a combination of bacterial or fungal infection and/or regimen-related toxicity at a median of 35 d (8–159). Of the remaining 13 pts, the GF pt died after 2nd SCT elsewhere, 1 pt had sudden death d 176 at home and 2 pts with extramedullary AML died d 60 and 149 with PD. One T-ALL pt died of late PD d 1758. All BM failure and 3/14 transplanted with PD survive. All 8 survivors (8/19 < 23 yrs) have 100% performance status at a median of 2423 d (1580–2875). None take medications or have chronic GVHD. 3 pts became CMV Ag + by d 100, (1 was transplanted with CMV), and responded to anti-viral therapy. Unlike many reported approaches to haploidentical SCT, aside from several CVL associated bacteremias, there have been no admissions for opportunistic infection and no late viral infections. All pts have good T cell counts, respond to vaccines and specific Ags and have good immunoglobulin levels. Costimulatory blockade, a method of limiting alloreactivity which leaves the remaining T cell repertoire intact, holds out promise as a method of overcoming alloreactivity while better preserving donor immune function and preserving anti-tumor activity. A new study combining costimulatory blockade and megadose stem cell SCT has been initiated.


Sign in / Sign up

Export Citation Format

Share Document