scholarly journals Starch digestion kinetics and mechanisms of hydrolysing enzymes in growing pigs fed processed and native cereal-based diets

2019 ◽  
Vol 121 (10) ◽  
pp. 1124-1136 ◽  
Author(s):  
Bianca M. J. Martens ◽  
Thomas Flécher ◽  
Sonja de Vries ◽  
Henk A. Schols ◽  
Erik M. A. M. Bruininx ◽  
...  

AbstractThis study aimed to examine in vivo starch digestion kinetics and to unravel the mechanisms of starch hydrolysing enzymes. Ninety pigs (23 (sd 2·1) kg body weight) were assigned to one of nine treatments in a 3×3 factorial arrangement, with starch source (barley, maize, high-amylose (HA) maize) and form (isolated, within cereal matrix, extruded) as factors. We determined starch digestion coefficients (DC), starch breakdown products and digesta retention times in four small-intestinal segments (SI1–4). Starch digestion in SI2 of pigs fed barley and maize, exceeded starch digestion of pigs fed HA maize by 0·20–0·33 DC units (P<0·01). In SI3–4, barley starch were completely digested, whereas the cereal matrix of maize hampered digestion and generated 16 % resistant starch in the small intestine (P<0·001). Extrusion increased the DC of maize and HA maize starch throughout the small intestine but not that of barley (P<0·05). Up to 25 % of starch residuals in the proximal small intestine of pigs was present as glucose and soluble α(1–4) maltodextrins. The high abundance of glucose, maltose and maltotriose in the proximal small intestine indicates activity of brush-border enzymes in the intestinal lumen, which is exceeded by α-amylase activity. Furthermore, we found that in vivo starch digestion exceeded our in vitro predictions for rapidly digested starch, which indicates that the role of the stomach on starch digestion is currently underestimated. Consequently, in vivo glucose release of slowly digestible starch is less gradual than expected, which challenges the prediction quality of the in vitro assay.

2016 ◽  
Vol 88 ◽  
pp. 199-206 ◽  
Author(s):  
Cecilie Toft Vangsøe ◽  
Anne Krog Ingerslev ◽  
Peter Kappel Theil ◽  
Mette Skou Hedemann ◽  
Helle Nygaard Lærke ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Judit Gil-Zamorano ◽  
João Tomé-Carneiro ◽  
María-Carmen Lopez de las Hazas ◽  
Lorena del Pozo-Acebo ◽  
M. Carmen Crespo ◽  
...  

Abstract The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. According to our results, changes in miRNA expression in response to fat ingestion are dependent on factors such as time upon exposure, gender and small intestine section. Classic and recent intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between the different experimental cohorts and in vitro models, results show that some miRNAs analysed here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid metabolism, and call for further research.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1540-1540
Author(s):  
Yoshiyuki Yamada ◽  
Jose A. Cancelas ◽  
Eric B. Brandt ◽  
Abel Sanchez-Aguilera ◽  
Melissa McBride ◽  
...  

Abstract Systemic mastocytosis (SM) associated with chronic eosinophilic leukemia (CEL)/hypereosinophilic syndrome (HES) is a result of expression of the Fip1-like1 (FIP1L1)/platelet-derived growth factor receptor alpha (PDGFRa) (F/P) fusion gene. We have previously described a murine CEL/HES model (CEL-like mice) induced by F/P fusion gene transduction and T-cell overexpression of IL-5 (Yamada Y et al., Blood 2006). We have now validated a preclinical murine model of F/P-induced SM/CEL and analyzed the pathogenesis of SM in this model. F/P+ mast cells (MC, defined as EGFP+/c-kit+/FceRI+) were significantly increased in the small intestine, bone marrow (BM) and spleen of CEL-like mice compared to wild-type mice (Table). CEL-like mice also developed cutaneous MC infiltration. In addition, mMCP-1 serum levels, which correlate well with MC expansion and activation in vivo, were significantly higher in CEL-like mice than in wild-type mice (64,000 ± 23,800 and 38 ± 41.4 pg/ml, respectively). F/P induces increased expansion of BM-derived MC in vitro (∼2,000-fold) and F/P+ BM-derived MC survive longer than wild-type MC in cytokine-deprived medium (28.0 ± 2.3% vs. 8.7 ± 3.1% 7AAD−/Annexin V− cells after 48 hours). This correlated with increased Akt phosphorylation in the F/P+ MC. Since c-kit mutations are the most frequent cause of SM, we analyzed the possible synergistic role of SCF and F/P signaling. F/P and SCF/c-kit signaling indeed synergize in the development of BM-derived MC (16-fold greater expansion than in the absence of SCF) and F/P+ BM-derived MC showed a 3.7-fold greater migratory response to SCF than wild-type BM-derived MC. In order to determine the role of SCF/c-kit signaling in F/P+ MC development, activation and tissue infiltration in vivo,these responses were evaluated in mice that were treated with a blocking anti-c-kit blocking antibody, ACK-2, or an isotype-matched control antibody. ACK-2 treatment suppressed intestinal MC infiltration and elevated plasma levels of mMCP-1 induced by F/P expression by 95 ± 6.0% and 98 ± 0.76%, respectively, whereas MC and plasma mMCP-1 were completely undetectable in wild-type mice treated with ACK2. This suggests that SCF/c-kit interactions may synergize with F/P to induce SM. In summary, mice with CEL-like disease also develop SM. F/P-induced SM is a result of increased in vivo MC proliferation, survival, activation and tissue infiltration. SCF/c-kit signaling synergizes with F/P in vivo and in vitro to promote mast cell development, activation and survival. EGFP+/c-kit+/FcεRI+ cell frequency in tissues of control and CEL-like mice (%) Control mice CEL-like mice Small intestine 1.0±0.95 47±21.4* Bone marrow 0.2±0.14 3±1.9* Spleen 0.05±0.01 3±0.8*


2009 ◽  
Vol 2009 ◽  
pp. 30-30
Author(s):  
A Doeschl-Wilson ◽  
I Kyriazakis ◽  
L Galina-Pantoja

Porcine reproductive and respiratory syndrome (PRRS) is an endemic pig disease in most European countries, causing respiratory distress, fever and growth reductions in growing pigs and increased litter mortality in sows. The disease is characterised by exceptionally long-term viral persistence within the host, a weak innate host immune response and delayed adaptive host immune response, and large between animal variation in the immune response (Murtaugh et al., 2004). Although numerous in-vitro and in-vivo studies produced valid insight into the fine details of the virus dynamics and its interaction with the host’s immune response, several fundamental questions concerning the role of diverse immune components and host genetics remain unanswered. In this study mathematical models were developed to investigate the role of diverse processes caused by the virus or the immune response on the infection characteristics.


2019 ◽  
Vol 122 (04) ◽  
pp. 388-399 ◽  
Author(s):  
Andrea Pallares Pallares ◽  
Bram Loosveldt ◽  
Solomon N. Karimi ◽  
Marc Hendrickx ◽  
Tara Grauwet

AbstractIn the present study, we evaluated the effect of process-induced common bean hardness on structural properties ofin vivogenerated boluses and the consequences forin vitrostarch digestion. Initially, the impact of human mastication on the particle size distribution (PSD) of oral boluses from common beans with different process-induced hardness levels was investigated through a mastication study. Then the effect of structural properties of selected boluses onin vitrostarch digestion kinetics was assessed. For a particular process-induced hardness level, oral boluses had similar PSD despite differences in masticatory parameters between participants of the mastication study. At different hardness levels, a clear effect of processing (P&lt;0·0001) was observed. However, the effect of mastication behaviour (P=0·1141) was not significant. Two distinctive fractions were present in all boluses. The first one was a cotyledon-rich fraction consisting of majorly small particles (40–125 µm), which could be described as individual cells based on microscopic observations. This fraction increased with a decrease in process-induced hardness. The second fraction (&gt;2000 µm) mostly contained seed coat material and did not change based on hardness levels. Thein vitrostarch digestion kinetics of common bean boluses was only affected by process-induced hardness. After kinetic modelling, significant differences were observed between the reaction rate constant of boluses generated from the hardest beans and those obtained from softer ones. Overall this work demonstrated that thein vitronutritional functionality of common beans is affected to a greater extent by structural properties induced by processing than by mechanical degradation in the mouth.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Yanhua Song ◽  
Ningguo Feng ◽  
Liliana Sanchez-Tacuba ◽  
Linda L. Yasukawa ◽  
Lili Ren ◽  
...  

ABSTRACT Our understanding of how rotavirus (RV) subverts host innate immune signaling has greatly increased over the past decade. However, the relative contribution of each virus-encoded innate immune antagonist has not been fully studied in the context of RV infection in vivo. Here, we present both in vitro and in vivo evidence that the host interferon (IFN)-inducible 2′-5′-oligoadenylate synthetase (OAS) and RNase L pathway effectively suppresses the replication of heterologous RV strains. VP3 from homologous RVs relies on its 2′-5′-phosphodiesterase (PDE) domain to counteract RNase L-mediated antiviral signaling. Using an RV reverse-genetics system, we show that compared to the parental strain, VP3 PDE mutant RVs replicated at low levels in the small intestine and were shed less in the feces of wild-type mice, and such defects were rescued in Rnasel−/− suckling mice. Collectively, these findings highlight an important role of VP3 in promoting viral replication and pathogenesis in vivo in addition to its well-characterized function as the viral RNA-capping enzyme. IMPORTANCE Rotaviruses are significant human pathogens that result in diarrhea, dehydration, and deaths in many children around the world. Rotavirus vaccines have suboptimal efficacy in low- to middle-income countries, where the burden of the diseases is the most severe. With the ultimate goal of improving current vaccines, we aim to better understand how rotavirus interacts with the host innate immune system in the small intestine. Here, we demonstrate that interferon-activated RNase L signaling blocks rotavirus replication in a strain-specific manner. In addition, virus-encoded VP3 antagonizes RNase L activity both in vitro and in vivo. These studies highlight an ever-evolving arms race between antiviral factors and viral pathogens and provide a new means of targeted attenuation for next-generation rotavirus vaccine design.


2021 ◽  
Author(s):  
Katharina Pälchen ◽  
Daphne Michels ◽  
Dorine Duijsens ◽  
Shannon Tabeth Gwala ◽  
Andrea Katherine Pallares Pallares ◽  
...  

Attention has been given to more (semi-)dynamic in vitro digestion approaches, ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time...


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1337 ◽  
Author(s):  
Patricia Rojas-Bonzi ◽  
Cecilie Toft Vangsøe ◽  
Kirstine Lykke Nielsen ◽  
Helle Nygaard Lærke ◽  
Mette Skou Hedemann ◽  
...  

The relationship between in vitro and in vivo starch digestion kinetics was studied in portal vein catheterised pigs fed breads varying in dietary fibre (DF) content and composition. The breads were a low DF white wheat bread, two high DF whole grain rye breads without and with whole kernels and two experimental breads with added arabinoxylan or oat β-glucan concentrates, respectively. In vitro, samples were collected at 0, 5, 10, 15, 30, 60, 120 and 180 min and the cumulative hydrolysis curve for starch was modelled, whereas the in vivo cumulative absorption models for starch were based on samples taken every 15 min up to 60 min and then every 30 min up to 240 min. The starch hydrolysis rate in vitro (0.07 to 0.16%/min) was far higher than the rate of glucose appearance in vivo (0.017 to 0.023% absorbed starch/min). However, the ranking of the breads was the same in vitro and in vivo and there was a strong relationship between the kinetic parameters.


1973 ◽  
Vol 44 (6) ◽  
pp. 583-594 ◽  
Author(s):  
R. F. Crampton ◽  
Maria T. Lis ◽  
D. M. Matthews

1. Though mucosal uptake of peptides plays an important part in protein absorption, little is known about the site of maximal absorption of peptides in the small intestine. This paper reports an investigation of the characteristics of absorption and hydrolysis of l-methionyl-l-methionine (Met-Met) and glycylglycine (Gly-Gly) by tied loops along the length of the small intestine of the rat, and those of absorption of the equivalent l-methionine (Met) and glycine (Gly). 2. Absorption of Met-Met, or a mixture of Met-Met and Met, was maximal in the proximal half of the small intestine, whereas absorption of Met was maximal in the distal half. Absorption of Met-Met was greater than that of the equivalent Met, especially in the proximal small intestine. In most sites, absorption of a mixture of Met-Met and Met was not significantly different from that of the equivalent Met-Met. Absorption of Met was not increased by raising its concentration from 100 to 200 μmol/ml, but addition of Met-Met (50 μmol/ml) produced a large increase in absorption, indicating that absorption of Met from Met-Met is independent of that from free Met. During absorption of Met-Met, large amounts of free Met appeared in the intestinal lumen. Most of this resulted from intralumen hydrolysis. The hydrolytic ability of mucosal homogenates was several times greater than that required to hydrolyse the Met-Met disappearing from the lumen during absorption. 3. The sites of maximal absorption of Gly-Gly, Gly and a mixture of Gly-Gly and Gly, were all in the proximal half of the intestine near the mid-point. Absorption of Gly-Gly was greater than that of the equivalent Gly, especially in the proximal sites. In several sites, there was no significant difference between absorption of a mixture of Gly-Gly and Gly and that of the equivalent Gly-Gly. During absorption of Gly-Gly, the amounts of free Gly appearing in the lumen were small except in the two most distal sites. Most of the free Gly resulted from back-diffusion from the mucosa. The hydrolytic ability of mucosal homogenates was barely adequate to hydrolyse the Gly-Gly disappearing from the lumen during absorption. 4. The results suggest that there is no real discrepancy between the site of maximal absorption of protein digestion products from tied loops of small intestine and that of their absorption in the intact animal. They indicate that absorption of Met and Met-Met involves independent mechanisms, and confirm previous evidence that the capacity of the intestine to absorb mixtures of peptides and amino acids is greater than its capacity to absorb amino acids alone.


1992 ◽  
Vol 67 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Robert J. Simpson ◽  
Sanjiv Sidhar ◽  
Timothy J. Peters

Iron speciation in rodent diet and rat gastrointestinal tract lumen during dietary digestion and absorption was investigated with a novel selective extraction technique. Five Fe fractions were identified, namely exchangeable (soluble in 1 M-magnesium chloride), carbonate-bound (soluble in mild acid), oxide-bound (soluble in hydroxylamine–acetic acid), organic-bound (soluble after treatment with peroxide in nitric acid) and residual. Fe from the pelleted diet was mobilized by rat stomach to the exchangeable fraction, then redistributed to the carbonate- and oxide-bound fractions on passage through the proximal small intestine. In vitro incubation of diet with hydrochloric acid failed to mimic the in vivo effect of the stomach. In vitro neutralization of stomach contents with bicarbonate was found to produce a similar effect on Fe speciation to that seen when diet passed the proximal small intestine in vivo. Comparison of59Fe speciation in extrinsically labelled diet with endogenous Fe speciation showed that extrinsic labelling does not uniformly label all endogenous species. The experiments suggest that selective extraction may provide a useful approach to the study of Fe species present in diets, in vitro digestions and gastrointestinal contents.


Sign in / Sign up

Export Citation Format

Share Document