Molecular cloning and expression of the vitellogenin gene and its correlation with ovarian development in an invasive pest Octodonta nipae on two host plants

2016 ◽  
Vol 106 (5) ◽  
pp. 642-650 ◽  
Author(s):  
Jin-Lei Li ◽  
Bao-Zhen Tang ◽  
You-Ming Hou ◽  
Yi-Xing Xie

AbstractThere is an ongoing relationship between host plants and herbivores. The nutrient substances and secondary compounds found in the host plant can not only impact the growth and development process of herbivores, but, more importantly, may also affect their survival and reproductive fitness. Vitellogenesis is the core process of reproductive regulation and is generally considered as a reliable indicator for evaluating the degree of ovarian development in females. Vitellogenin (Vg) plays a critical role in the synthesis and secretion of yolk protein. In this study, the full-length cDNA of the Vg gene in an alien invasive species, the nipa palm hispid beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) (OnVg) was cloned and, the effect of host plant on the OnVg expression level and ovarian development was investigated. The results revealed that the OnVg was highly and exclusively expressed in adult females, but barely detectable in larvae, pupae and adult males. The relative expression level of OnVg and egg hatchability were much higher in females fed on Phoenix canariensis (their preferred host) than those fed on Phoenix roebelenii. A positive correlation relationship between OnVg expression and egg hatchability was also detected. Additionally, the anatomy of the female reproductive system showed that the ovaries of individuals fed on P. canariensis were considerably more developed than in females fed on P. roebelenii. The results may be applicable to many pest management situations through reproductive disturbance by alternating host plant species or varieties or by reproductive regulation through vitellogenesis mediated by specific endocrine hormones.

2021 ◽  
Vol 9 (3) ◽  
pp. 156-160
Author(s):  
Muhammad Ramzan ◽  

Fall armyworm, Spodoptera frugiperda is considered an important noctuid moth pest of agricultural crops all over the world and recently become an invasive pest in Pakistan. The crops belonging to Asteraceae, Fabaceae and Poaceae families are highly affected with this pest. The description of host plants is very important in understanding the biology, ecology and application of most effective techniques against the pest. By keeping in view, the importance of this pest, the current study was conducted to evaluate the most preferable host plant such as maize, potato, cabbage, cotton and lehli for this pest in the study area. The results showed that cabbage and maize were the most suitable hosts for larval feeding. The incubation period was recorded 2.00 and 2.12 days on cabbage and maize, respectively. The developmental period of larvae was found longer on cabbage as compared to maize. Potato, cotton and lehli were not found suitable for pest rearing. The study concluded that maize and cabbage are the most suitable hosts for S. frugiperda larvae under natural and controlled conditions.


Author(s):  
Marcin W. Zielonka ◽  
Tom W. Pope ◽  
Simon R. Leather

Abstract The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Belén Cotes ◽  
Gunda Thöming ◽  
Carol V. Amaya-Gómez ◽  
Ondřej Novák ◽  
Christian Nansen

AbstractRoot-associated entomopathogenic fungi (R-AEF) indirectly influence herbivorous insect performance. However, host plant-R-AEF interactions and R-AEF as biological control agents have been studied independently and without much attention to the potential synergy between these functional traits. In this study, we evaluated behavioral responses of cabbage root flies [Delia radicum L. (Diptera: Anthomyiidae)] to a host plant (white cabbage cabbage Brassica oleracea var. capitata f. alba cv. Castello L.) with and without the R-AEF Metarhizium brunneum (Petch). We performed experiments on leaf reflectance, phytohormonal composition and host plant location behavior (behavioral processes that contribute to locating and selecting an adequate host plant in the environment). Compared to control host plants, R-AEF inoculation caused, on one hand, a decrease in reflectance of host plant leaves in the near-infrared portion of the radiometric spectrum and, on the other, an increase in the production of jasmonic, (+)-7-iso-jasmonoyl-l-isoleucine and salicylic acid in certain parts of the host plant. Under both greenhouse and field settings, landing and oviposition by cabbage root fly females were positively affected by R-AEF inoculation of host plants. The fungal-induced change in leaf reflectance may have altered visual cues used by the cabbage root flies in their host plant selection. This is the first study providing evidence for the hypothesis that R-AEF manipulate the suitability of their host plant to attract herbivorous insects.


Author(s):  
Ran Wang ◽  
Yuan Hu ◽  
Peiling Wei ◽  
Cheng Qu ◽  
Chen Luo

Abstract Odorant binding proteins (OBPs) of insects play a critical role in chemical perceptions and choice of insect host plant. Bemisia tabaci is a notorious insect pest which can damage more than 600 plant species. In order to explore functions of OBPs in B. tabaci, here we investigated binding characteristics and function of odorant-binding protein 3 in B. tabaci (BtabOBP3). The results indicated that BtabOBP3 shows highly similar sequence with OBPs of other insects, including the typical signature motif of six cysteines. The recombinant BtabOBP3 protein was obtained, and the evaluation of binding affinities to tested volatiles of host plant was conducted, then the results indicated that β-ionone had significantly higher binding to BtabOBP3 among other tested plant volatiles. Furthermore, silencing of BtabOBP3 significantly altered choice behavior of B. tabaci to β-ionone. In conclusion, it has been demonstrated that BtabOBP3 exerts function as one carrier of β-ionone and the results could be contributed to reveal the mechanisms of choosing host plant in B. tabaci.


Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii24-iii24
Author(s):  
Q Chang ◽  
L Zhu ◽  
N Li

Abstract BACKGROUND Medulloblastoma (MB) is the most common malignant paediatric brain tumor. Recent studies show that M2 cells were relative more abundant in Shh subtype of MBs compared with other three subtypes. It’s known that M2 cells have close relationship with many tumors’ progression. But if they play any role in the progression of Shh subtype of MB is not yet clear. Many studies demonstrate that exosomes carring miRNAs have close relationship with tumor invasion. The aim of present study is to clarify the role of exosome miRNA between tumor cells and microglias during the progression of Shh subtype of medulloblastoma. MATERIAL AND METHODS Immunofluerescence staining using iNOS and Arg1, which is M1 and M2 specific marker, respectively, was performed in four subtypes of MBs. After coculture of exosomes extracted from Shh subtype of MB cell (DAOY) with microglia cell (BV2), Q-PCR and ELISA assay were done to evaluate the polarization status of the microglia. Transwell and scratch assay were then performed to detect the migration ability of DAOY cell after treatment of exosomes from polirized M2 cells. MiRNA sequencing by Ion Proton technology was then done to analyze the miRNAs expression level between Shh subtype and other subtype of MBs. Transformation assay was used to overexpress and inhibit the expression of these miRNAs respectively to further clarify the role of exosome miRNA in the polarization of BV2 cells. RESULTS M2 cells were observed more abundant than other three subtypes of tumors, supporting that M2 cells play some role in this subtype of MBs. Exosomes of DAOY cells can induce the polarization of M2 cells. The polarized M2 cells can improved the migration and invasion ability of DAOY cell. Dozens of miRNAs were identified with different expression level between Shh subtype of MBs and other subtype of MB cells. Among them, 4 miRNAs were reported to be related with polariztion of M2 in many other lesions. Three of the 4 miRNAs can induce the polarization of M2 in present study. CONCLUSION Our study demonstrated exosome miRNA play a critical role between tumor cells and microglias during the progression of Shh subtype of medulloblastoma.


2019 ◽  
Vol 9 (3) ◽  
pp. 151-159
Author(s):  
Magdalena Sunarti Pareira ◽  
Irdika Mansur ◽  
Dewi Wulandari

The sandalwood tree (Santalum album Linn.) is an important tree species as well as a primadonna for the people of East Nusa Tenggara (NTT). It has high economic value for its aromatic wood and essential oil content that have a very distinctive aroma used to make various products such as handicrafts, woodcarvings, incense, and oil for the perfume and cosmetics industry. Sandalwood is a semi parasite plant that part of its life phase requires a host plant to get the nutrients and water. There are many types of host plants that have been used, among others, Casuarina equisetifolia, Acacia mangium, Terminalia microcarpa, Sesbania grandiflora, Alternanthera sp and Capsicum annum. In this research will be tested to try sandalwood planted with Cymbopogon nardus host plants, in terms of economics can provide benefits.Arbuscular mycorrhizal fungi (AMF) is a group of fungi from glomeromycota phylum that can symbiosis mutualism with root system of high level plant. The working principle of the mycorrhiza is to infect the root system of the host plant, producing intensive hyphae tissue so that the plant containing mycorrhiza will be able to increase the capacity in nutrient uptake. The utilization of host plants Alternanthera sp, Capsicum annum, and its application with AMF is the best solution to overcome the problem of developing sandalwood in TTU on the nursery. The purpose of this study was to analyze the effectiveness of AMF and utilization of the atsiri host plant to increase the growth of sandalwood seedlings in TTU. This study was designed using a complete random method (RAL) in split plot design. If the treatment has a significant effect then followed by Duncan Multiple Range Test (DMRT). Parameters observed were height (cm), number of leaf, diameter of sandalwood (mm), dry weight of root, seed quality index, ratio of root buds, and haustorium observation of Sandalwood, and also number of spore, root colonization and AMF dependency of Sandalwood.The results showed that the treatment of AMF with Capsicum annum host plant was 19.8 of high, number of leaf 18.9 on FMA treatment with host plant Capsicum annum, diameter of stem 2.24 mm on Alternanthera sp host treatments without AMF and 1.83 mm at AMF treatment with host plant Capsicum annum, dry weight of buds 2.00g on AMF treatment with Capsicum annum host plant, dry weight of roots AMF (M1) with alternanthera sp 0.70 g, root buds ratio of AMF with host plant alternanthera sp 4.05, seed quality index AMF with Alternanthera sp 4.16 and 82 % of root colonization on AMF with host plant Capsicum annum.Keywords: Santalum album Linn., AMF, host plant.


Reproduction ◽  
2021 ◽  
Author(s):  
Vasiliki E. Mourikes ◽  
Jodi A Flaws

The ovaries play a critical role in female reproductive health because they are the site of oocyte maturation and sex steroid hormone production. The unique cellular processes that take place within the ovary make it a susceptible target for chemical mixtures. Herein, we review the available data regarding the effects of chemical mixtures on the ovary, focusing on development, folliculogenesis, and steroidogenesis. The chemical mixtures discussed include those to which women are exposed to environmentally, occupationally, and medically. Following a brief introduction to chemical mixture components, we describe the effects of chemical mixtures on ovarian development, folliculogenesis, and steroidogenesis. Further, we discuss the effects of chemical mixtures on corpora lutea and transgenerational outcomes. Identifying the effects of chemical mixtures on the ovaries is paramount to preventing and treating mixture-inducing toxicity of the ovary that has long-term consequences such as infertility and ovarian disease.


2019 ◽  
Author(s):  
Yu Okamura ◽  
Ai Sato ◽  
Natsumi Tsuzuki ◽  
Masashi Murakami ◽  
Hanna Heidel-Fischer ◽  
...  

AbstractAdaptive traits that enable organisms to conquer novel niches and experience subsequent diversification are ecologically and evolutionarily important. The larvae of Pieris butterflies express nitrile-specifier proteins (NSPs), a key innovation for overcoming the glucosinolate (GLS)-myrosinase-based defense system of their Brassicales host-plants. NSPs are a member of the NSP-like gene family, which includes the major allergen (MA) protein, a paralog of NSP with a GLS-disarming function, and a single domain major allergen (SDMA) protein, whose function is unknown. The arms-race between a highly variable host-plant defense system and members of the NSP-like gene family is suggested to mediate diversification in both Pierid butterflies and Brassicales plants. Here, we combined feeding experiments using 25 Brassicaceae plants and five Pieris species with larval transcriptome data to investigate the evolutionary forces acting on NSP-like gene family members associated with patterns of host-plant usage. Although we observed significantly elevated nonsynonymous to synonymous substitution ratios in NSPs, no such pattern was observed in MAs or SDMAs. Furthermore, we found a signature of positive selection of NSP at a phylogenetic branch which reflects different host-plant preferences. Our data indicate that NSPs have evolved in response to shifting preferences for host plants among five Pieris butterflies, whereas MAs and SDMAs appear to have more conserved functions. Our results show that the evolution and functional differentiation of key genes used in host-plant adaptation play a crucial role in the chemical arms-race between Pieris butterflies and their Brassicales host-plants.


Sign in / Sign up

Export Citation Format

Share Document