Rotational grazing management of forage peanut

2020 ◽  
Vol 56 (4) ◽  
pp. 495-505
Author(s):  
Lucas da Rocha Carvalho ◽  
Lilian Elgalise Techio Pereira ◽  
Sila Carneiro Da Silva

AbstractThe perennial forage peanut is a stoloniferous, perennial tropical legume with potential for use in pastures. Based on the hypothesis that under intermittent stocking herbage accumulation would follow a similar pattern to that described for tropical forage grasses, the objective of this study was to evaluate canopy characteristics and herbage accumulation of forage peanut subjected to strategies of rotational grazing management. Treatments corresponded to all possible combinations of two grazing frequencies (regrowth interrupted at 95% and maximum canopy light interception – LI95% and LIMax) and two grazing severities (post-grazing canopy heights (CHs) equivalent to 40 and 60% of the pre-grazing heights). Treatments were imposed to experimental units during an adaptation period (from November 2014 to January 2015) and the subsequent experimental period lasted from February 2015 to April 2016, comprising two consecutive pasture growing seasons with no interruption between them (summer I to summer II). The pre-grazing targets of LI95% and LIMax corresponded to CHs of 13 and 18 cm, respectively. Forage peanut showed high grazing tolerance as pre-grazing leaf area index (except during summer I and autumn/winter), total herbage, and leaflet dry matter accumulation varied only with seasons. Higher rates of herbage production were recorded during summer I and summer II, followed by those during late and early spring and autumn/winter. Since there was no difference in the pattern of herbage accumulation between LI95% and LIMax and stolons predominated at the bottom of the canopies, forage peanut may be rotationally grazed with greater flexibility than most tropical forage grasses. Recommended pre-grazing CHs are within 13 and 18 cm, and post-grazing heights between 40 and 60% of the pre-grazing height.

1995 ◽  
Vol 75 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Y. A. Papadopoulos ◽  
M. A. Price ◽  
L. F. Laflamme ◽  
N. R. Fulton ◽  
G. M. Hunter ◽  
...  

This study was conducted to compare orchardgrass (Dactylis glomerata L.) cultivar performance under contrasting management systems (hay vs. rotational grazing) during the first two production years. The trial consisted of eight orchardgrass cultivars broadcast seeded in a randomized complete-block design, with three replications. The perimeter of each replication was fenced, and the area was divided into two sections. The first section was managed as a simulated hay production system. The second section was managed by simulating a rotational grazing system using crossbred ewes. Dry matter (DM) yield was determined before harvesting or grazing. Tiller density (TD) and leaf area index (LAI) were measured on four cultivars prior to harvesting and grazing. Excellent DM yield and persistence were obtained from all cultivars in both years under hay management but varied considerably under grazing management. Cultivar ranking according to DM yield under hay management was different from ranking based on performance under pasture management. One group of four cultivars had a decrease in yield of 19.9% in the second year of grazing, over the first year, but yield of the remaining group increased by 5.7% (SED = 9.83). Production of hay was similar for both groups. Early-maturing cultivars yielded 7% more DM and had higher crop growth rates (CGR), LAI and TD than late-maturing cultivars. Growth characteristics of orchardgrass cultivars as measured by DM yield, CGR, LAI and TD were modified by management practice. As a result, evaluating orchardgrass varieties under a hay management system was not effective in determining their performance under grazing. Key words:Dactylis glomerata, cultivar evaluation, cultivar development, grazing, yield, yield components


2017 ◽  
Vol 155 (7) ◽  
pp. 1082-1092 ◽  
Author(s):  
S. C. DA SILVA ◽  
M. B. CHIAVEGATO ◽  
K. S. PENA ◽  
M. C. T. SILVEIRA ◽  
L. M. BARBERO ◽  
...  

SUMMARYPlants’ ability to rebuild their tiller population is affected by weather changes and management strategies. The hypothesis of the present study was that frequency and severity of defoliation alter Mulato grass (Brachiaria ruziziensis × Brachiaria brizantha cv. Marandu) sward development, and the proportion of aerial and basal tillers, interfering with sward stability. The objective was to evaluate aerial, basal and total tiller population density and changes in tillering dynamics. Treatments corresponded to strategies of rotational grazing characterized by combinations between two pre-grazing (95% and maximum canopy light interception during regrowth; LI95% and LIMax) and two post-grazing conditions (15 and 20 cm stubble height). The experimental period comprised four seasons of the year: summer 2008 (February–March 2008); autumn–early spring (April to mid-November 2008); late spring (mid-November–December 2008); and summer 2009 (January–March 2009). Density of aerial tillers decreased from summer 2008 to late spring. Tiller death decreased from summer 2008 to autumn–early spring. Aerial and total tiller death increased from late spring to summer 2009, mainly for the LI95% treatment. No differences were observed in the tiller population stability index of aerial tillers for LI treatments or post-grazing heights. The balance between tiller appearance and death for basal tillers remained relatively stable from summer 2008 to late spring. For aerial tillers the balance decreased to negative values from summer 2008 to autumn–early spring for both LI treatments. For total tiller population, the balance decreased to negative values from summer 2008 to autumn–early spring. Results indicated a strong seasonal effect on Mulato grass tillering and growth. Tillering dynamics were affected primarily by grazing frequency, which changed the relative importance of basal and aerial tillers. The results suggested that basal tillering was the predominant perennation pathway.


2013 ◽  
Vol 53 (8) ◽  
pp. 727 ◽  
Author(s):  
G. N. Hinch ◽  
J. Hoad ◽  
M. Lollback ◽  
S. Hatcher ◽  
R. Marchant ◽  
...  

This paper reports changes in livestock weights recorded in a whole-farmlet experiment, which aimed to examine the profitability and sustainability of three different pasture and grazing management strategies. The assessment of liveweights was considered a key component of measuring the integrated effects of the farmlet-scale treatments. The three farmlets comprised a typical management regime, which employed flexible rotational grazing over eight paddocks with moderate soil fertility (farmlet B), a system based on the same grazing management and paddock number but with higher levels of sown pasture and soil fertility (farmlet A) and a farmlet with moderate soil fertility and intensive rotational grazing over 37 paddocks (farmlet C). Early in the experimental period, there were no significant differences between farmlets in the liveweight of any class of livestock. However, from the second year onwards, as the pasture renovation, soil fertility and grazing management treatments took effect, differences in liveweight between farmlets became more apparent and significant. The stocking rate, which was treated as an emergent property of each farmlet, reached a maximum annual average value after 5 years of 12.6, 8.5 and 7.7 dry sheep equivalents (dse)/ha on farmlets A, B and C representing 84, 113 and 51% of their respective target stocking rates which were 15, 7.5 and 15 dse/ha. The liveweights of ewes, both before joining and during pregnancy, varied with year and farmlet with those on farmlets A and B tending to be significantly heavier than those on farmlet C. From 2003 to 2006, liveweights were significantly (P < 0.001) affected by a wide array of factors and their interactions including: date, ewe age, green digestible herbage, legume herbage mass, proportion of farmlet grazed, stocking rate and level of supplementary feeding. The weights of lambs/weaners/hoggets, both pre- and post-weaning, were at times also higher on farmlets A and B compared with those on farmlet C and were affected by a similar range of factors to those which affected ewe weights. Similar relative differences also applied to the liveweights of the other livestock run on the farmlets, namely wethers and non-reproductive cattle. The results suggest that stocking rate was able to be increased towards the higher target of farmlet A due to the higher level of pasture renovation and soil fertility on that farmlet, which led to high liveweights per head as well as the higher stocking rate. However, as the stocking rate increased on farmlet A, the differences between farmlets in liveweight per head diminished and the need for supplementary feeding increased. In contrast, the intensive rotational grazing practised on farmlet C did not allow the farmlet to increase its stocking rate towards its higher target. It appears that the higher proportion of each of farmlets A and B grazed at any one time allowed all classes of livestock to reach higher liveweights per head than on farmlet C, due presumably to the greater proportion of those two farmlets grazed at any one time.


1986 ◽  
Vol 107 (2) ◽  
pp. 405-420 ◽  
Author(s):  
P. D. Jenkins ◽  
D M. H. Leitch

SummaryResults are reported from experiments carried out in three seasons in an environment with mild winters and early springs in which the date of sowing of winter oil-seed rape was varied from early September to early December. Consistently high seed yields were achieved in the late sowings and, in two of the three seasons, delaying sowing beyond early September resulted in significant yield increases. The pattern of dry-matter accumulation and changes in leaf area index were affected to a large extent by sowing date, but no significant effect on total dry-matter production at final harvest was found. Numbers of axillary inflorescences per plant and, in two of the experiments, numbers of fertile pods/m2, were reduced by late sowing, but large increases in numbers of seed per pod were found in each experiment. Mean weight per seed was reduced when sowing was delayed but there was no consistent effect on oil content. Differences were found between cultivars in the extent to which delayed sowing produced increased yields. It is suggested that early spring growth, delayed flowering and reduced reflexion of radiation during flowering were important factors leading to the high yields achieved by late sowings. No interactions were found between sowing date and plant population density for any yield component in one experiment.


1962 ◽  
Vol 42 (2) ◽  
pp. 139-144 ◽  
Author(s):  
F. W. Calder ◽  
J. W. G. Nicholson ◽  
H. M. Cunningham

Two experiments were conducted to compare forward creep grazing of lambs with other grazing management systems for ewes and lambs. In the first experiment, forward creep grazing with and without creep feeding of concentrates was compared with rotational grazing, using 7 ewes with single lambs per plot of [Formula: see text] acres. The first lambs reached market weight by the 57th day of the experiment, at which time the average lamb gains were higher on the creep grazed-creep fed groups, but there was no difference in the gains on the other two systems. The experiment was continued for 35 days and during this period the lamb gains on the creep grazed plots were higher than on the rotationally grazed areas. This later period coincided with a period of reduced herbage growth due to below normal precipitation. The average daily gains for the entire experimental period were.45,.51 and.57 pounds for rotational, creep, and creep fed-creep grazed systems respectively.In the second experiment, forward creep grazing was compared with rotational grazing and free range grazing, using a higher stocking rate of 8 ewes and 10 lambs per plot. The average daily gains for the experiment were.38,.40 and.34 pounds for rotational, creep grazed, and free range systems respectively. The differences between grazing systems were not statistically significant at P = 0.05. Both the ewe and lamb gains were lower on the free-range system than on the other systems. The ewe gains were higher on the rotationally grazed areas than the forward creep grazed areas in both experiments. This indicates that forward creep grazing of lambs can be advantageous under conditions where herbage is abundant.Evidence obtained from helminth ova counts on fecal samples, and examination of representative digestive tracts of the lambs marketed, indicated that the forward creep grazing of lambs reduced but did not prevent a build-up of internal parasites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaodan Wang ◽  
Yaliang Wang ◽  
Yuping Zhang ◽  
Jing Xiang ◽  
Yikai Zhang ◽  
...  

AbstractDetermination of the optimal fertilization method is crucial to maximize nitrogen use efficiency and yield of different rice cultivars. Side-deep fertilization with controlled-release nitrogen, in conjunction with machine transplanting and subsequent topdressing, was applied to Indica–japonica hybrid rice ‘Yongyou1540’ (YY1540) and indica hybrid rice ‘Tianyouhuazhan’ (TYHZ). Four nitrogen treatments were applied in 2018 and 2019: traditional nitrogen application with quick-release nitrogen (T1), single-dose deep fertilization at transplanting with 100% controlled-release nitrogen (T2), and deep fertilization of 70% controlled-release nitrogen and topdressing of 30% quick nitrogen at tillering (T3), or at panicle initiation (T4). Side-deep fertilization reduced the fertilizer application frequency without causing yield loss, T4 enhanced the yield of YY1540 by increasing the number of productive tillers and number of spikelets per panicle compared with T1, T2 and T3. The yield of TYHZ showed no significant difference among treatments. The T4 treatment decreased the number of tillers at the tilling peak stage and increased the percentage productive tillers and number of differentiated spikelets. Compared with the other treatments, T4 increased dry matter accumulation and leaf area index during panicle initiation and grain ripening, and contributed to enhanced nitrogen uptake and nitrogen utilization in YY1540. On average, nitrogen uptake and utilization in YY1540 were highest in T4, but no significant differences among treatments were observed in TYHZ. Dry matter accumulation and nitrogen uptake from panicle initiation to heading of YY1540 were correlated with number of spikelets per panicle, but no significant correlations were observed for TYHZ. Supplementary topdressing with quick-release nitrogen at the panicle initiation stage was required to increase yield of indica–japonica hybrid rice, whereas single-dose deep fertilization with controlled-release nitrogen is satisfactory for the indica hybrid cultivar.


1966 ◽  
Vol 67 (2) ◽  
pp. 199-210 ◽  
Author(s):  
A.G. Campbell

1. Net pasture dry matter production and available pasture dry matter were measured over 3 years in a small-scale replica of the study of the effects of dairy cow grazing management and stocking rate reported by McMeekan & Walshe (1963).2. The four treatments were(i) Controlled rotational grazing, light stocking rate (0.95 cows/acre).(ii) Controlled rotational grazing, heavy stocking rate (1.19 cows/acre).(iii) Uncontrolled, set stocked grazing, light stocking rate (0.95 cows/acre).(iv) Uncontrolled, set stocked grazing, heavy stocking rate (1.19 cows/acre).3. The pasture measurement technique employed measured net pasture production (gains through new growth minus losses from all sources). It is argued that this parameter, rather than absolute pasture production, governs the changes in the dry matter feed supply to the grazing animal.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


2021 ◽  
Vol 125 ◽  
pp. 107484
Author(s):  
Xabier Díaz de Otálora ◽  
Lur Epelde ◽  
Josune Arranz ◽  
Carlos Garbisu ◽  
Roberto Ruiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document